Основные аспекты дискретного преобразования фурье. Его свойства. Двумерное преобразование Фурье

Линейная фильтрация изображений может осуществляться как в пространственной, так и в частотной области. При этом считается, что "низким" пространственным частотам соответствует основное содержание изображения - фон и крупноразмерные объекты, а "высоким" пространственным частотам - мелкоразмерные объекты, мелкие детали крупных форм и шумовая компонента.

Традиционно для перехода в область пространственных частот используются методы, основанные на $\textit{преобразовании Фурье}$. В последние годы все большее применение находят также методы, основанные на $\textit{вейвлет-преобразовании (wavelet-transform)}$.

Преобразование Фурье.

Преобразование Фурье позволяет представить практически любую функцию или набор данных в виде комбинации таких тригонометрических функций, как синус и косинус, что позволяет выявить периодические компоненты в данных и оценить их вклад в структуру исходных данных или форму функции. Традиционно различаются три основные формы преобразования Фурье: интегральное преобразование Фурье, ряды Фурье и дискретное преобразование Фурье.

Интегральное преобразование Фурье переводит вещественную функцию в пару вещественных функций или одну комплексную функцию в другую.

Вещественную функцию $f(x)$ можно разложить по ортогональной системе тригонометрических функций, то есть представить в виде

$$ f\left(x \right)=\int\limits_0^\infty {A\left(\omega \right)} \cos \left({2\pi \omega x} \right)d\omega -\int\limits_0^\infty {B\left(\omega \right)} \sin \left({2\pi \omega x} \right)d\omega , $$

где $A(\omega)$ и $B(\omega)$ называются интегральными косинус- и синус-преобразованиями:

$$ A\left(\omega \right)=2\int\limits_{-\infty }^{+\infty } {f\left(x \right)} \cos \left({2\pi \omega x} \right)dx; \quad B\left(\omega \right)=2\int\limits_{-\infty }^{+\infty } {f\left(x \right)} \sin \left({2\pi \omega x} \right)dx. $$

Ряд Фурье представляет периодическую функцию $f(x)$, заданную на интервале $$, в виде бесконечного ряда по синусам и косинусам. То есть периодической функции $f(x)$ ставится в соответствие бесконечная последовательность коэффициентов Фурье

$$ f\left(x \right)=\frac{A_0 }{2}+\sum\limits_{n=1}^\infty {A_n } \cos \left({\frac{2\pi xn}{b-a}} \right)+\sum\limits_{n=1}^\infty {B_n \sin \left({\frac{2\pi xn}{b-a}} \right)} , $$

$$ A_n =\frac{2}{b-a}\int\limits_a^b {f\left(x \right)} \cos \left({\frac{2\pi nx}{b-a}} \right)dx; \quad B_n =\frac{2}{b-a}\int\limits_a^b {f\left(x \right)} \sin \left({\frac{2\pi nx}{b-a}} \right)dx. $$

Дискретное преобразование Фурье переводит конечную последовательность вещественных чисел в конечную последовательность коэффициентов Фурье.

Пусть $\left\{ {x_i } \right\}, i= 0,\ldots, N-1 $ - последовательность вещественных чисел - например, отсчеты яркости пикселов по строке изображения. Эту последовательность можно представить в виде комбинации конечных сумм вида

$$ x_i =a_0 +\sum\limits_{n=1}^{N/2} {a_n } \cos \left({\frac{2\pi ni}{N}} \right)+\sum\limits_{n=1}^{N/2} {b_n \sin \left({\frac{2\pi ni}{N}} \right)} , $$

$$ a_0 =\frac{1}{N}\sum\limits_{i=0}^{N-1} {x_i } , \quad a_{N/2} =\frac{1}{N}\sum\limits_{i=0}^{N-1} {x_i } \left({-1} \right)^i, \quad a_k =\frac{2}{N}\sum\limits_{i=0}^{N-1} {x_i \cos \left({\frac{2\pi ik}{N}} \right)}, $$

$$ b_k =\frac{2}{N}\sum\limits_{i=0}^{N-1} {x_i \sin \left({\frac{2\pi ik}{N}} \right)}, \quad i\le k

Основное отличие между тремя формами преобразования Фурье заключается в том, что если интегральное преобразование Фурье определено по всей области определения функции $f(x)$, то ряд и дискретное преобразование Фурье определены только на дискретном множестве точек, бесконечном для ряда Фурье и конечном для дискретного преобразования.

Как видно из определений преобразования Фурье, наибольший интерес для систем цифровой обработки сигналов представляет дискретное преобразование Фурье. Данные, получаемые с цифровых носителей или источников информации, представляют собой упорядоченные наборы чисел, записанные в виде векторов или матриц.

Обычно принимается, что входные данные для дискретного преобразования представляют собой равномерную выборку с шагом $\Delta $, при этом величина $T=N\Delta $ называется длиной записи, или основным периодом. Основная частота равна $1/T$. Таким образом, в дискретном преобразовании Фурье производится разложение входных данных по частотам, которые являются целым кратным основной частоты. Максимальная частота, определяемая размерностью входных данных, равна $1/2 \Delta $ и называется $\it{частотой Найквиста}$. Учет частоты Найквиста имеет важное значение при использовании дискретного преобразования. Если входные данные имеют периодические составляющие с частотами, превышающими частоту Найквиста, то при вычислении дискретного преобразования Фурье произойдет подмена высокочастотных данных более низкой частотой, что может привести к ошибкам при интерпретации результатов дискретного преобразования.

Важным инструментом анализа данных является также $\it{энергетический спектр}$. Мощность сигнала на частоте $\omega $ определяется следующим образом:

$$ P \left(\omega \right)=\frac{1}{2}\left({A \left(\omega \right)^2+B \left(\omega \right)^2} \right) . $$

Эту величину часто называют $\it{энергией сигнала}$ на частоте $\omega $. Согласно теореме Парсеваля общая энергия входного сигнала равна сумме энергий по всем частотам.

$$ E=\sum\limits_{i=0}^{N-1} {x_i^2 } =\sum\limits_{i=0}^{N/2} {P \left({\omega _i } \right)} . $$

График зависимости мощности от частоты называется энергетическим спектром или спектром мощности. Энергетический спектр позволяет выявлять скрытые периодичности входных данных и оценивать вклад определенных частотных компонент в структуру исходных данных.

Комплексное представление преобразования Фурье.

Кроме тригонометрической формы записи дискретного преобразования Фурье широко используется $\it{комплексное представление}$. Комплексная форма записи преобразования Фурье широко используется в многомерном анализе и в частности при обработке изображений.

Переход из тригонометрической в комплексную форму осуществляется на основании формулы Эйлера

$$ e^{j\omega t}=\cos \omega t+j\sin \omega t, \quad j=\sqrt {-1} . $$

Если входная последовательность представляет собой $N$ комплексных чисел, то ее дискретное преобразование Фурье будет иметь вид

$$ G_m =\frac{1}{N}\sum\limits_{n=1}^{N-1} {x_n } e^{\frac{-2\pi jmn}{N}}, $$

а обратное преобразование

$$ x_m =\sum\limits_{n=1}^{N-1} {G_n } e^{\frac{2\pi jmn}{N}}. $$

Если входная последовательность представляет собой массив вещественных чисел, то для нее существует как комплексное, так и синусно-косинусное дискретное преобразование. Взаимосвязь этих представлений выражается следующим образом:

$$ a_0 =G_0 , \quad G_k =\left({a_k -jb_k } \right)/2, \quad 1\le k\le N/2; $$

остальные $N/2$ значений преобразования являются комплексно сопряженными и не несут дополнительной информации. Поэтому график спектра мощности дискретного преобразования Фурье симметричен относительно $N/2$.

Быстрое преобразование Фурье.

Простейший способ вычисления дискретного преобразования Фурье (ДПФ) - прямое суммирование, оно приводит к $N$ операциям на каждый коэффициент. Всего коэффициентов $N$, так что общая сложность $O\left({N^2} \right)$. Такой подход не представляет практического интереса, так как существуют гораздо более эффективные способы вычисления ДПФ, называемые быстрым преобразованием Фурье (БПФ), имеющее сложность $O (N\log N)$. БПФ применяется только к последовательностям, имеющим длину (число элементов), кратную степени 2. Наиболее общий принцип, заложенный в алгоритм БПФ, заключается в разбиении входной последовательности на две последовательности половинной длины. Первая последовательность заполняется данными с четными номерами, а вторая - с нечетными. Это дает возможность вычисления коэффициентов ДПФ через два преобразования размерностью $N/2$.

Обозначим $\omega _m =e^{\frac{2\pi j}{m}}$, тогда $G_m =\sum\limits_{n=1}^{(N/2)-1} {x_{2n} } \omega _{N/2}^{mn} +\sum\limits_{n=1}^{(N/2)-1} {x_{2n+1} } \omega _{N/2}^{mn} \omega _N^m $.

Для $m < N/2$ тогда можно записать $G_m =G_{\textrm{even}} \left(m \right)+G_{\textrm{odd}} \left(m \right)\omega _N^m $. Учитывая, что элементы ДПФ с индексом б ольшим, чем $N/2$, являются комплексно сопряженными к элементам с индексами меньшими $N/2$, можно записать $G_{m+(N/2)} =G_{\textrm{even}} \left(m \right)-G_{\textrm{odd}} \left(m \right)\omega _N^m $. Таким образом, можно вычислить БПФ длиной $N$, используя два ДПФ длиной $N/2$. Полный алгоритм БПФ заключается в рекурсивном выполнении вышеописанной процедуры, начиная с объединения одиночных элементов в пары, затем в четверки и так до полного охвата исходного массива данных.

Двумерное преобразование Фурье.

Дискретное преобразование Фурье для двумерного массива чисел размера $M\times N$ определяется следующим образом:

$$ G_{uw} =\frac{1}{NM}\sum\limits_{n=1}^{N-1} {\sum\limits_{m=1}^{M-1} {x_{mn} } } e^{{-2\pi j\left[ {\frac{mu}{M}+\frac{nw}{N}} \right]} }, $$

а обратное преобразование

$$ x_{mn} =\sum\limits_{u=1}^{N-1} {\sum\limits_{w=1}^{M-1} {G_{uw} } } e^{ {2\pi j\left[ {\frac{mu}{M}+\frac{nw}{N}} \right]} }. $$

В случае обработки изображений компоненты двумерного преобразования Фурье называют $\textit{пространственными частотами}$.

Важным свойством двумерного преобразования Фурье является возможность его вычисления с использованием процедуры одномерного БПФ:

$$ G_{uw} =\frac{1}{N}\sum\limits_{n=1}^{N-1} { \left[ {\frac{1}{M}\sum\limits_{m=0}^{M-1} {x_{mn} e^{\frac{-2\pi jmw}{M}}} } \right] } e^{\frac{-2\pi jnu}{N}}, $$

Здесь выражение в квадратных скобках есть одномерное преобразование строки матрицы данных, которое может быть выполнено с одномерным БПФ. Таким образом, для получения двумерного преобразования Фурье нужно сначала вычислить одномерные преобразования строк, записать результаты в исходную матрицу и вычислить одномерные преобразования для столбцов полученной матрицы. При вычислении двумерного преобразования Фурье низкие частоты будут сосредоточены в углах матрицы, что не очень удобно для дальнейшей обработки полученной информации. Для перевода получения представления двумерного преобразования Фурье, в котором низкие частоты сосредоточены в центре матрицы, можно выполнить простую процедуру, заключающуюся в умножении исходных данных на $-1^{m+n}$.

На рис. 16 показаны исходное изображение и его Фурье-образ.

Полутоновое изображение и его Фурье-образ (изображения получены в системе LabVIEW)

Свертка с использованием преобразования Фурье.

Свертка функций $s(t)$ и $r(t)$ определяется как

$$ s\ast r\cong r\ast s\cong \int\limits_{-\infty }^{+\infty } {s(\tau)} r(t-\tau)d\tau . $$

На практике приходится иметь дело с дискретной сверткой, в которой непрерывные функции заменяются наборами значений в узлах равномерной сетки (обычно берется целочисленная сетка):

$$ (r\ast s)_j \cong \sum\limits_{k=-N}^P {s_{j-k} r_k }. $$

Здесь $-N$ и $P$ определяют диапазон, за пределами которого $r(t) = 0$.

При вычислении свертки с помощью преобразования Фурье используется свойство преобразования Фурье, согласно которому произведение образов функций в частотной области эквивалентно свертке этих функций во временн ой области.

Для вычисления сверки необходимо преобразовать исходные данные в частотную область, то есть вычислить их преобразование Фурье, перемножить результаты преобразования и выполнить обратное преобразование Фурье, восстановив исходное представление.

Единственная тонкость в работе алгоритма связана с тем, что в случае дискретного преобразования Фурье (в отличие от непрерывного) происходит свертка двух периодических функций, то есть наши наборы значений задают именно периоды этих функций, а не просто значения на каком-то отдельном участке оси. То есть алгоритм считает, что за точкой $x_{N }$ идет не ноль, а точка $x_{0}$, и так далее по кругу. Поэтому, чтобы свертка корректно считалась, необходимо приписать к сигналу достаточно длинную последовательность нулей.

Фильтрация изображений в частотной области.

Линейные методы фильтрации относятся к числу хорошо структурированных методов, для которых разработаны эффективные вычислительные схемы, основанные на быстрых алгоритмах свертки и спектральном анализе. В общем виде линейные алгоритмы фильтрации выполняют преобразование вида

$$ f"(x,y) = \int\int f(\zeta -x, \eta -y)K (\zeta , \eta) d \zeta d \eta , $$

где $K(\zeta ,\eta)$ - ядро линейного преобразования.

При дискретном представлении сигнала интеграл в данной формуле вырождается во взвешенную сумму отсчетов исходного изображения в пределах некоторой апертуры. При этом выбор ядра $K(\zeta ,\eta)$ в соответствии с тем или иным критерием оптимальности может привести к ряду полезных свойств (гауссовское сглаживание при регуляризации задачи численного дифференцирования изображения и др.).

Наиболее эффективно линейные методы обработки реализуются в частотной области.

Использование Фурье-образа изображения для выполнения операций фильтрации обусловлено прежде всего более высокой производительностью таких операций. Как правило, выполнение прямого и обратного двумерного преобразования Фурье и умножение на коэффициенты Фурье-образа фильтра занимает меньше времени, чем выполнение двумерной свертки исходного изображения.

Алгоритмы фильтрации в частотной области основываются на теореме о свертке. В двумерном случае преобразование свертки выглядит следующим образом:

$$ G\left({u,v} \right)=H\left({u,v} \right)F\left({u,v} \right), $$

где $G$ - Фурье-образ результата свертки, $H$ - Фурье-образ фильтра, а $F$ - Фурье-образ исходного изображения. То есть в частотной области двумерная свертка заменяется поэлементным перемножением образов исходного изображения и соответствующего фильтра.

Для выполнения свертки необходимо выполнить следующие действия.

  1. Умножить элементы исходного изображения на $-1^{m+n}$, для центрирования Фурье-образа.
  2. Вычислить Фурье образ $F(u,v)$, используя БПФ.
  3. Умножить Фурье образ $F(u,v)$ на частотную функцию фильтра $H(u,v)$.
  4. Вычислить обратное преобразование Фурье.
  5. Умножить вещественную часть обратного преобразования на $-1^{m+n}$.

Связь между функцией фильтра в частотной и пространственной области можно определить, используя теорему о свертке

$$ \Phi \left[ {f\left({x,y} \right)\ast h(x,y)} \right]=F\left({u,v} \right)H\left({u,v} \right), $$

$$ \Phi \left[ {f\left({x,y} \right)h(x,y)} \right]=F\left({u,v} \right)\ast H\left({u,v} \right). $$

Свертка функции с импульсной функцией может быть представлена следующим образом:

$$ \sum\limits_{x=0}^M {\sum\limits_{y=0}^N {s\left({x,y} \right)} } \delta \left({x-x_0 ,y-y_0 } \right)=s(x_0 ,y_0). $$

Фурье-преобразование импульсной функции

$$ F\left({u,v} \right)=\frac{1}{MN}\sum\limits_{x=0}^M {\sum\limits_{y=0}^N {\delta \left({x,y} \right) } } e^{ {-2\pi j\left({\frac{ux}{M}+\frac{vy}{N}} \right)} } =\frac{1}{MN}. $$

Пусть $f(x,y) = \delta (x,y)$, тогда свертка

$$ f\left({x,y} \right)\ast h(x,y)=\frac{1}{MN}h\left({x,y} \right), $$

$$ \Phi \left[ {\delta \left({x,y} \right)\ast h(x,y)} \right]=\Phi \left[ {\delta \left({x,y} \right)} \right]H\left({u,v} \right)=\frac{1}{MN}H\left({u,v} \right). $$

Из этих выражений видно, что функции фильтра в частотной и пространственной областях взаимосвязаны через преобразование Фурье. Для данной функции фильтра в частотной области всегда можно найти соответствующий фильтр в пространственной области, применив обратное преобразование Фурье. То же верно и для обратного случая. Используя данную взаимосвязь, можно определить процедуру синтеза пространственных линейных фильтров.

  1. Определяем требуемые характеристики (форму) фильтра в частотной области.
  2. Выполняем обратное преобразование Фурье.
  3. Полученный фильтр можно использовать как маску для пространственной свертки, при этом размеры маски можно уменьшить по сравнению с размерами исходного фильтра.

{$\textit{Идеальный фильтр низких частот}$} $H(u,v)$ имеет вид $$H(u,v) = 1, \quad \mbox{если }D(u,v) < D_0 ,$$ $$H(u,v) = 0, \quad \mbox{если }D(u,v) \ge D_0 ,$$ где $D\left({u,v} \right)=\sqrt {\left({u-\frac{M}{2}} \right)^2+\left({v-\frac{N}{2}} \right)^2}$ - расстояние от центра частотной плоскости.

{$\textit{Идеальный высокочастотный фильтр}$} получается путем инверсии идеального низкочастотного фильтра:

$$ H"(u,v) = 1-H(u,v). $$

Здесь происходит полное подавление низкочастотных компонент при сохранении высокочастотных. Однако как и в случае идеального низкочастотного фильтра, его применение чревато появлением существенных искажений.

Для синтеза фильтров с минимальными искажениями используются различные подходы. Одним из них является синтез фильтров на основе экспоненты. Такие фильтры привносят минимальные искажения в результирующее изображение и удобны для синтеза в частотной области.

Широко используемым при обработке изображений является семейство фильтров на основании вещественной функции Гаусса.

$\textit{Низкочастотный гауссовский фильтр}$ имеет вид

$$ h\left(x \right)=\sqrt {2\pi } \sigma Ae^{-2\left({\pi \sigma x} \right)^2} \mbox{ и } H\left(u \right)=Ae^{-\frac{u^2}{2\sigma ^2}} $$

Чем уже профиль фильтра в частотной области (чем больше $\sigma $), тем он шире в пространственной.

{$\textit{Высокочастотный гауссовский фильтр}$} имеет вид

$$ h\left(x \right)=\sqrt {2\pi } \sigma _A Ae^{-2\left({\pi \sigma _A x} \right)^2}-\sqrt {2\pi } \sigma _B Be^{-2\left({\pi \sigma _B x} \right)^2 }, $$

$$ H\left(u \right)=Ae^{-\frac{u^2}{2\sigma _A^2 }}-Be^{-\frac{u^2}{2\sigma _B^2 }}. $$

В двумерном случае {$\it{низкочастотный}$} фильтр гаусса выглядит следующим образом:

$$ H\left({u,v} \right)=e^{-\frac{D^2\left({u,v} \right)}{2D_0^2 }}. $$

{$\it{Высокочастотный}$} гауссовский фильтр имеет вид

$$ H\left({u,v} \right)=1-e^{-\frac{D^2\left({u,v} \right)}{2D_0^2 }}. $$

Рассмотрим пример фильтрации изображения (рис. 1) в частотной области (рис. 17 - 22). Заметим, что частотная фильтрация изображения может иметь смысл как сглаживания ($\textit{низкочастотная фильтрация}$), так и выделения контуров и мелкоразмерных объектов ($\textit{высокочастотная фильтрация}$).

Как видно из рис. 17, 19, по мере нарастания "мощности" фильтрации в низкочастотной составляющей изображения все сильнее проявляется эффект "кажущейся расфокусировки" или $\it{размытия}$ изображения. В то же время в высокочастотную составляющую, где в начале наблюдаются лишь контура объектов, постепенно переходит большая часть информационного содержания изображения (рис. 18, 20 - 22).

Рассмотрим теперь поведение высокочастотных и низкочастотных фильтров (рис. 23 - 28) в присутствии аддитивного гауссовского шума на изображении (рис. 7).

Как видно из рис. 23, 25, свойства низкочастотных фильтров по подавлению аддитивной случайной помехи аналогичны свойствам ранее рассмотренных линейных фильтров - при достаточной мощности фильтра помехи подавляются, однако платой за это является сильное размытие контуров и "расфокусировка" всего изображения. Высокочастотная составляющая зашумленного изображения перестает быть информативной, так как помимо контурной и объектовой информации там теперь также полностью присутствует и шумовая компонента (рис. 27, 28).

Применение частотных методов наиболее целесообразно в случае, когда известны статистическая модель шумового процесса или/и оптическая передаточная функция канала передачи изображения. Учесть такие априорные данные удобно, выбрав в качестве восстанавливающего фильтра обобщенный управляемый (параметрами $\sigma$ и $\mu$) фильтр следующего вида:

$$ F(w_1,w_2)= \left[ { \frac {1} {P(w_1,w_2)} }\right] \cdot \left[ {\frac {{\vert P(w_1,w_2) \vert }^2} {\vert P(w_1,w_2) \vert ^2 + \alpha \vert Q(w_1,w_2) \vert ^2} }\right]. $$

где $0 < \sigma < 1$, $0 < \mu < 1$ - назначаемые параметры фильтра, $P(w_{1}$, $w_{2})$ - передаточная функция системы, $Q(w_{1}$, $w_{2})$ - стабилизатор фильтра, согласованный с энергетическим спектром фона. Выбор параметров $\sigma = 1$, $\mu = 0$ приводит к чисто инверсной фильтрации, $\sigma =\mu = 1$ к \it{винеровской фильтрации}, что позволяет получить изображение, близкое к истинному в смысле минимума СКО при условии, что спектры плотности мощности изображения и его шумовой компоненты априорно известны. Для дальнейшего улучшения эффекта сглаживания в алгоритм линейной (винеровской) фильтрации вводят адаптацию, основанную на оценке локальных статистик: математического ожидания $M(P)$ и дисперсии $\sigma (P)$. Этот алгоритм эффективно фильтрует засоренные однородные поверхности (области) фона. Однако при попадании в скользящее окно обработки неоднородных участков фона импульсная характеристика фильтра сужается ввиду резкого изменения локальных статистик, и эти неоднородности (контуры, пятна) передаются практически без расфокусировки, свойственной неадаптивным методам линейной фильтрации.

К достоинствам методов линейной фильтрации следует отнести их ясный физический смысл и простоту анализа результатов. Однако при резком ухудшении соотношения сигнал/шум, при возможных вариантах площадного зашумления и наличии высокоамплитудного импульсного шума линейные методы предварительной обработки могут оказаться недостаточными. В этой ситуации значительно более мощными оказываются нелинейные методы.

Дискретное двумерное преобразование Фурье матрицы отсчетов изображения определяется в виде ряда:

где , а дискретное обратное преобразование имеет вид:

По аналогии с терминологией непрерывного преобразования Фурье переменные называют пространственными частотами. Следует отметить, что не все исследователи пользуются определением (4.97), (4.98). Одни предпочитают помещать все масштабные постоянные в выражение для обратного преобразования, а другие изменяют знаки в ядрах на противоположные.

Поскольку ядра преобразования симметричны и разделимы, двумерное преобразование можно выполнить в виде последовательных одномерных преобразований по строкам и столбцам матрицы изображения. Базисными функциями преобразования являются экспоненты с комплексными показателями, которые можно разложить на синусную и косинусную составляющие. Таким образом,

Спектр изображения имеет много интересных структурных особенностей. Спектральная составляющая в начале координат частотной плоскости

равна увеличенному в N раз среднему (по исходной плоскости) значению яркости изображения.

Подставив в равенство (4.97)

где и – постоянные, получим:

При любых целочисленных значениях и второй экспоненциальный множитель равенства (4.101) превращается в единицу. Таким образом, при ,

что свидетельствует о периодичности частотной плоскости. Этот результат иллюстрирует рисунок 4.14, а.

Двумерный спектр Фурье изображения является по существу представлением двумерного поля в виде ряда Фурье. Для того чтобы такое представление было справедливым, исходное изображение также должно обладать периодической структурой, т.е. иметь рисунок, повторяющийся по вертикали и горизонтали (рис. 4.14, б). Таким образом, правый край изображения примыкает к левому, а верхний край – к нижнему. Из-за разрывов значений яркости в этих местах в спектре изображения возникают дополнительные составляющие, лежащие на координатных осях частотной плоскости. Эти составляющие не связаны со значениями яркости внутренних точек изображения, но они необходимы для воспроизведения его резких границ.

Если массив отсчетов изображения описывает поле яркости, то числа будут действительными и положительными. Однако спектр Фурье этого изображения в общем случае имеет комплексные значения. Поскольку спектр содержит компонент, представляющих действительную и мнимую части или фазу и модуль спектральных составляющих для каждой частоты, может показаться, что преобразование Фурье увеличивает размерность изображения. Это, однако, не так, поскольку обладает симметрией относительно комплексного сопряжения. Если в равенстве (4.101) положить и равными целым числам, то после комплексного сопряжения получится равенство:

С помощью подстановки и src=http://electrono.ru/wp-content/image_post/osncifr/pic126_15.gif> можно показать, что

Из-за наличия комплексно-сопряженной симметрии почти половина спектральных составляющих оказывается избыточной, т.е. их можно сформировать из остальных составляющих (рис. 4.15). Избыточными составляющими можно, конечно, считать гармоники, попадающие не в нижнюю, а в правую полуплоскость.

Фурье-анализ в обработке изображений используется в тех же целях, что и для одномерных сигналов. Однако в частотной области изображения не представляют какой-либо осмысленной информации, что делает преобразование Фурье не таким полезным средством анализа изображений. Например, когда преобразование Фурье применяется к одномерному аудиосигналу, то во временной области трудноформализуемая и сложная форма сигнала преобразуется в простой для понимания спектр в частотной области. Для сравнения, беря преобразование Фурье (трансформанту Фурье) изображения, мы преобразуем упорядоченную информацию в пространственной области (пространственном домене) в закодированную форму в частотной области (частотном домене). Короче говоря, не ожидайте, что преобразование Фурье поможет Вам понять информацию, закодированную в изображениях.

Аналогично, не стоит обращаться к частотной области при проектировании фильтра. Основной характерной особенностью в изображениях является граница – линия, отделяющая один объект или область от другого объекта или области . Так как контуры на изображении содержат в себе широкий диапазон частотных составляющих, то пытаться изменить изображение, манипулируя спектром частот – задача малоэффективная. Фильтры для обработки изображений обычно проектируются в пространственной области, где информация представлена в своей самой простой и доступной форме. При решении задач обработки изображений необходимо, скорее, оперировать терминами операций сглаживания и подчеркивания контуров (пространственный домен), чем в терминах фильтр верхних частот и фильтр нижних частот (частотный домен).

Несмотря на это, Фурье анализ изображения имеет несколько полезных свойств. Например, свертка в пространственной области соответствует умножению в частотной области. Это важно, потому что умножение – более простая математическая операция, чем свертка. Как и в случае с одномерными сигналами, это свойство позволяет выполнять свертку с использованием БПФ и использовать различные методы деконволюции. Другое полезное свойство в частотной области – это теорема Фурье сектора , устанавливающая соответствия между изображением и его проекциями (виды одного и того же изображения с различных сторон). Эта теорема составляет теоретическую базу таких направлений как копьютерная томография , рентгеноскопия , широко используемых в медицине и промышленности.

Частотный спектр изображения может быть вычислен несколькими способами, но наиболее практичным методом для вычисления спектра является алгоритм БПФ. При использовании алгоритма БПФ первоначальное изображение должно содержать N строк и N столбцов, причем число N должно быть кратно степени 2, т.е. 256, 512, 1024 и

т.д. Если исходное изображение по своей размерности не кратно степени 2, то необходимо добавить пиксели с нулевым значением, чтобы дополнить изображение до нужного размера. Вследствие того, что преобразование Фурье сохраняет порядок следования информации, амплитуды низкочастотных составляющих будут располагаться по углам двумерного спектра, в то время как высокочастотные составляющие будут находиться в его центре.

В качестве примера рассмотрим результат преобразования Фурье электронно-микроскопического изображения входного каскада операционного усилителя (рис.4.16). Так как в частотной области могут содержаться пиксели с отрицательными значениями, то шкала уровней «серого» этих изображений смещена таким образом, что отрицательные значения воспринимаются как темные точки на изображении, нулевые – как серые, а положительные – как светлые. Обычно низкочастотные составляющие спектра изображения по амплитуде намного больше, чем высокочастотные, что объясняет наличие очень ярких и очень темных точек в четырех углах на изображении спектра (рис. 4.16, б). Как видно из рисунка, типовой спе

19 Билет 1. Операция дилатации

2. Пространственно-спектральные признаки

Операции дилатации.

Пусть А и В – множества из пространства Z 2 . Дилатация множества А по множеству В (или относительно В) обозначается А⊕В и определяется как

Можно переписать в следующем виде:

Множество В будем называть структурообразующим множеством или примитивом дилатации.

В основе (11) лежит получение центрального отражения множества В относительно его начальных координат (центр В), затем сдвиг этого множества в точку z, дилатация множества А по В – множество всех таких смещений z, при которых и А совпадают по меньшей мере в одном элементе.

Данное определение не является единственным. Однако процедура дилатации в некотором смысле похожа на операцию свертки, которая выполняется над множествами.


Пространственно-спектральные признаки

В соответствии с (1.8) двумерное преобразование Фурье определяется как

где w x , w y – пространственные частоты.

Квадрат модуля спектра M(w x , w y ) = |Ф(w x , w y )| 2 может быть использован для вычисления ряда признаков. Интегрирование функции M (w x , w y ) по углу на плоскости пространственных частот дает пространственно-частотный признак, инвариантный относительно сдвига и вращения изображения. Представив функцию M (w x , w y ) в полярных координатах, запишем этот признак в виде


где q = arctg (w y /w x ); r 2 = w x 2 +w y 2 .

Инвариантностью относительно масштаба обладает признак


20 Билет 1. Операция эрозии

Пусть f (x 1 , x 2) – функция двух переменных. По аналогии с одномерным преобразованием Фурье можно ввести двумерное преобразование Фурье:

Функция при фиксированных значениях ω 1 , ω 2 описывает плоскую волну в плоскости x 1 , x 2 (рисунок 19.1).

Величины ω 1 , ω 2 имеют смысл пространственных частот и размерность мм −1 , а функция F(ω 1 , ω 2) определяет спектр пространственных частот. Сферическая линза способна вычислять спектр оптического сигнала (рисунок 19.2). На рисунке 19.2 введены обозначения: φ - фокусное расстояние,

Рисунок 19.1 – К определению пространственных частот

Двумерное преобразование Фурье обладает всеми свойствами одномерного преобразования, кроме того отметим два дополнительных свойства, доказательство которых легко следует из определения двумерного преобразования Фурье.


Рисунок 19.2 – Вычисление спектра оптического сигнала с использованием
сферической линзы

Факторизация . Если двумерный сигнал факторизуется,

то факторизуется и его спектр:

Радиальная симметрия . Если двумерный сигнал радиально-симметричен, то есть

Где – функция Бесселя нулевого порядка. Формулу, определяющую связь между радиально-симметричным двумерным сигналом и его пространственным спектром называют преобразованием Ганкеля.


ЛЕКЦИЯ 20. Дискретное преобразование Фурье. Низкочастотный фильтр

Прямое двумерное дискретное преобразование Фурье (ДПФ) преобразует изображение, заданное в пространственной координатной системе (x, y ), в двумерное дискретное преобразование изображения, заданное в частотной координатной системе (u,v ):

Обратное дискретное преобразование Фурье (ОДПФ) имеет вид:

Видно, что ДПФ является комплексным преобразованием. Модуль этого преобразования представляет амплитуду спектра изображения и вычисляется как корень квадратный из суммы квадратов действительной и мнимой частей ДПФ. Фаза (угол сдвига фазы) определяется как арктангенс отношения мнимой части ДПФ к действительной. Энергетический спектр равен квадрату амплитуды спектра, или сумме квадратов мнимой и действительной частей спектра.



Теорема о свертке

В соответствии с теоремой о свертке, свертка двух функций в пространственной области может быть получена ОДПФ произведения их ДПФ, то есть

Фильтрация в частотной области позволяет по ДПФ изображения подобрать частотную характеристику фильтра, обеспечивающую необходимое преобразование изображения. Рассмотрим частотные характеристики наиболее распространенных фильтров.