Аналогия механических и электромагнитных колебаний таблица. Гармонические электромагнитные колебания. Аналогия между механическими и электрическими колебаниями

>> Аналогия между механическими и электромагнитными колебаниями

§ 29 АНАЛОГИЯ МЕЖДУ МЕХАНИЧЕСКИМИ И ЭЛЕКТРОМАГНИТНЫМИ КОЛЕБАНИЯМИ

Электромагнитные колебания в контуре имеют сходство со свободными механическими колебаниями, например с колебаниями тела, закрепленного на пружине (пружинный маятник). Сходство относится не к природе самих величин, которые периодически изменяются, а к процессам периодического изменения различных величин.

При механических колебаниях периодически изменяются координата тела х и проекция его скорости x , а при электромагнитных колебаниях изменяются заряд q конденсатора и сила тока i в цепи. Одинаковый характер изменения величин (механических и электрических) объясняется тем, что имеется аналогия в условиях, при которых возникают механические и электромагнитные колебания .

Возвращение к положению равновесия тела на пружине вызывается силой упругости F x упр, пропорциональной смещению тела от положения равновесия. Коэффициентом пропорциональности является жесткость пружины k.

Разрядка конденсатора (появление тока) обусловлена напряжением и между пластинами конденсатора, которое про порционально заряду q. Коэффициентом пропорциональности является величина , обратная емкости, так как u = q.

Подобно тому как, вследствие инертности, тело лишь постепенно увеличивает скорость под действием сильт и эта скорость после прекращения действия силы не становится сразу равной нулю, электрический ток в катушке за счет явления самоиндукции увеличивается под действием напряжения постепенно и не исчезает сразу, когда это напряжение становится равным нулю. Индуктивность контура L выполняет ту же роль, что и масса тела т при механических колебаниях. Соответственно кинетическая энергия тела аналогична энергии магнитного поля тока

Зарядка конденсатора от батареи аналогична сообщению телу, прикрепленному к пружине, потенциальной энергии при смещении тела на расстояние x m от положения равновесия (рис. 4.5, а). Сравнивая это выражение c энергией конденсатора замечаем, что жесткость k пружины выполняет при механических колебаниях такую же роль, как величина , обратная емкости, при электромагнитных колебаниях. При этом начальная координата х m соответствует заряду q m .

Возникновение в электрической цепи тока i соответствует появлению в механической колебательной системе скорости тела x под действием силы упругости пружины (рис. 4.5, б).

Момент времени, когда конденсатор разрядится, а сила тока достигнет максимума, аналогичен тому моменту времени, когда тело будет проходить с максимальной скоростью (рис. 4.5, в) положение равновесия.

Далее конденсатор в ходе электромагнитных колебаний начнет перезаряжаться, а тело в ходе механических колебаний - смещаться влево от положения равновесия (рис. 4.5, г). По прошествии половины периода Т конденсатор полностью перезарядится и сила тока станет равной нулю.

При механических колебаниях этому соответствует отклонение тела в крайнее левое положение, когда его скорость равна нулю (рис. 4.5, д).

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

§ 29. Аналогия между механическими и электромагнитными колебаниями

Электромагнитные колебания в контуре имеют сходство со свободными механическими колебаниями, например с колебаниями тела, закрепленного на пружине (пружинный маятник). Сходство относится не к природе самих величин, которые периодически изменяются, а к процессам периодического изменения различных величин.

При механических колебаниях периодически изменяются координата тела х и проекция его скорости v x , а при электромагнитных колебаниях изменяются заряд q конденсатора и сила тока i в цепи. Одинаковый характер изменения величин (механических и электрических) объясняется тем, что имеется аналогия в условиях, при которых возникают механические и электромагнитные колебания.

Возвращение к положению равновесия тела на пружине вызывается силой упругости F x упр, пропорциональной смещению тела от положения равновесия. Коэффициентом пропорциональности является жесткость пружины k .

Разрядка конденсатора (появление тока) обусловлена напряжением и между пластинами конденсатора, которое пропорционально заряду q . Коэффициентом пропорциональности является величина обратная емкости, так как

Подобно тому как, вследствие инертности, тело лишь постепенно увеличивает скорость под действием силы и эта скорость после прекращения действия силы не становится сразу равной нулю, электрический ток в катушке за счет явления самоиндукции увеличивается под действием напряжения постепенно и не исчезает сразу, когда это напряжение становится равным нулю. Индуктивность контура L выполняет ту же роль, что и масса тела m при механических колебаниях. Соответственно кинетическая энергия тела аналогична энергии магнитного поля тока

Зарядка конденсатора от батареи аналогична сообщению телу, прикрепленному к пружине, потенциальной энергии при смещении тела на расстояние х m от положения равновесия (рис. 4.5, а). Сравнивая это выражение с энергией конденсатора замечаем, что жесткость k пружины выполняет при механических колебаниях такую же роль, как величина обратная емкости, при электромагнитных колебаниях. При этом начальная координата х m соответствует заряду q m .

Возникновение в электрической цепи тока i соответствует появлению в механической колебательной системе скорости тела v х под действием силы упругости пружины (рис. 4.5, б).

Момент времени, когда конденсатор разрядится, а сила тока достигнет максимума, аналогичен тому моменту времени, когда тело будет проходить с максимальной скоростью (рис. 4.5, в) положение равновесия.

Далее конденсатор в ходе электромагнитных колебаний начнет перезаряжаться, а тело в ходе механических колебаний - смещаться влево от положения равновесия (рис. 4.5, г). По прошествии половины периода Т конденсатор полностью перезарядится и сила тока станет равной нулю.

При механических колебаниях этому соответствует отклонение тела в крайнее левое положение, когда его скорость равна нулю (рис. 4.5, д). Соответствие между механическими и электрическими величинами при колебательных процессах можно свести в таблицу.

Электромагнитные и механические колебания имеют разную природу, но описываются одинаковыми уравнениями.

Вопросы к параграфу

1. В чем проявляется аналогия между электромагнитными колебаниями в контуре и колебаниями пружинного маятника?

2. За счет какого явления электрический ток в колебательном контуре не исчезает сразу, когда напряжение на конденсаторе становится равным нулю?

Собственные незатухающие электромагнитные колебания

Электромагнитными колебаниями называютсяколебания электрических зарядов, токов и физических величин, характеризующих электрические и магнитные поля.

Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.

Простейшим типом периодических колебаний являются гармонические колебания. Гармонические колебания описываются уравнениями

Или .

Различают колебания зарядов, токов и полей, неразрывно связанных друг с другом, и колебания полей, существующих в отрыве от зарядов и токов. Первые имеют место в электрических цепях, вторые – в электромагнитных волнах.

Колебательным контуром называется электрическая цепь, в которой могут происходить электромагнитные колебания.

Колебательным контуром служит любая замкнутая электрическая цепь, состоящая из конденсатора емкостью С, катушки индуктивности с индуктивностью L и резистора сопротивлением R , в которой происходят электромагнитные колебания.

Простейший (идеальный) колебательный контур – это соединенные между собой конденсатор и катушка индуктивности. В таком контуре емкость сосредоточена только в конденсаторе, индуктивность – только в катушке и, кроме того, омическое сопротивление контура равно нулю, т.е. нет потерь энергии на тепло.

Чтобы в контуре возникли электромагнитные колебания, контур необходимо вывести из состояния равновесия. Для этого достаточно зарядить конденсатор или возбудить ток в катушке индуктивности и предоставить самому себе.

Сообщим одной из обкладок конденсатора заряд + q м. Из-за явления электростатической индукции вторая обкладка конденсатора зарядится отрицательным зарядом – q м. В конденсаторе возникнет электрическое поле с энергией .

Так как катушка индуктивности подсоединена к конденсатору, то напряжения на концах катушки будут равны напряжению между обкладками конденсатора. Это приведет к направленному движению свободных зарядов в контуре. Вследствие этого в электрической цепи контура наблюдается одновременно: нейтрализация зарядов на обкладках конденсатора (разрядка конденсатора) и упорядоченное движение зарядов в катушке индуктивности. Упорядоченное движение зарядов в цепи колебательного контура называется разрядным током.

Из-за явления самоиндукции разрядный ток начнет увеличиваться постепенно. Чем больше индуктивность катушки, тем медленнее растет разрядный ток.

Таким образом, разность потенциалов, приложенная к катушке, ускоряет движение зарядов, а эдс самоиндукции, напротив, тормозит их. Совместное действие разности потенциалов и эдс самоиндукции приводит к постепенному нарастанию разрядного тока . В тот момент, когда конденсатор полностью разрядится, ток в цепи достигнет максимального значения I м.



Этим завершается первая четверть периода колебательного процесса .

В процессе разрядки конденсатора разность потенциалов на его обкладках, заряд обкладок и напряженность электрического поля уменьшаются, при этом ток через катушку индуктивности и индукция магнитного поля возрастают. Энергия электрического поля конденсатора постепенно превращается в энергию магнитного поля катушки.

В момент завершения разрядки конденсатора энергия электрического поля будет равна нулю, а энергия магнитного поля достигает максимума

,

где L – индуктивность катушки, I m – максимальный ток в катушке.

Наличие в контуре конденсатора приводит к тому, что разрядный ток на его обкладках обрывается, заряды здесь тормозятся и накапливаются.

На той обкладке, по направлению к которой течет ток, накапливаются положительные заряды, на другой обкладке – отрицательные. В конденсаторе вновь возникает электростатическое поле, но теперь уже противоположного направления. Это поле тормозит движение зарядов катушки. Следовательно, ток и его магнитное поле начинают убывать. Уменьшение магнитного поля сопровождается возникновением эдс самоиндукции, которая препятствует уменьшению тока и поддерживает его первоначальное направление. Благодаря совместному действию вновь возникшей разности потенциалов и эдс самоиндукции ток уменьшается до нуля постепенно. Энергия магнитного поля снова переходит в энергию электрического поля. Этим завершается половина периода колебательного процесса. На третьей и четвертой частях описанные процессы повторяются, как на первой и второй частях периода, но в обратном направлении. Пройдя все эти четыре стадии, контур вернется в исходное состояние. Последующие циклы колебательного процесса будут в точности повторяться.

В колебательном контуре периодически изменяются следующие физические величины:

q - заряд на обкладках конденсатора;

U - разность потенциалов на конденсаторе и, следовательно, на концах катушки;

I - разрядный ток в катушке;

Напряженность электрического поля;

Индукция магнитного поля;

W E - энергия электрического поля;

W B - энергия магнитного поля.

Найдем зависимости q , I , , W E , W B от времени t .

Для нахождения закона изменения заряда q = q(t), необходимо составить для него дифференциальное уравнение и найти решение этого уравнения.

Так как контур идеальный (т.е. не излучает электромагнитных волн и не выделяет тепла), то его энергия, состоящая из суммы энергии магнитного поля W B и энергии электрического поля W E , остается неизменной в любой момент времени.

где I(t) и q(t) – мгновенные значения тока и заряда на обкладках конденсатора.

Обозначив , получим дифференциальное уравнение для заряда

Решение уравнения описывает изменение заряда на обкладках конденсатора со временем.

,

где - амплитудное значение заряда; - начальная фаза; - циклическая частота колебаний, - фаза колебаний.

Колебания любой физической величины, описывающей уравнением, называют собственными незатухающими колебания. Величину называют собственной циклической частотой колебаний. Период колебаний Т – наименьший промежуток времени, по истечении которого физическая величина принимает то же значение и имеет ту же скорость.

Период и частота собственных колебаний контура вычисляются по формулам:

Выражение называют формулой Томсона.

Изменения разности потенциалов (напряжения) между обкладками конденсатора со временем


, где - амплитуда напряжения.

Зависимость силы тока от времени определяется соотношением –

где - амплитуда тока.

Зависимость эдс самоиндукции от времени определяется соотношением –

где - амплитуда эдс самоиндукции.

Зависимость энергии электрического поля от времени определяется соотношением

где - амплитуда энергии электрического поля.

Зависимость энергии магнитного поля от времени определяется соотношением

где - амплитуда энергии магнитного поля.

В выражения для амплитуд всех изменяющихся величин входит амплитуда заряда q m . Эта величина, а также начальная фаза колебаний φ 0 определяются начальными условиями – зарядом конденсатора и током в контуре в начальный момент времени t = 0.

Зависимости
от времени t приведены на рис.

При этом, колебания заряда и разности потенциалов совершаются в одинаковых фазах, ток отстает по фазе от разности потенциалов на , частота колебаний энергий электрического и магнитного полей в два раза больше частоты колебаний всех других величин.

Темы кодификатора ЕГЭ : свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания - это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур - это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания - периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия - только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент : . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Рис. 1.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия . Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Рис. 2.

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же - координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Рис. 3.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия . Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть : . Конденсатор перезаряжается - на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Рис. 4.

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия . Маятник продолжает двигаться влево - от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Рис. 5.

Аналогия . Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть : . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Рис. 6.

Аналогия . Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти : . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Рис. 7.

Аналогия . Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Четвёртая четверть : . Ток убывает, конденсатор заряжается (рис. 8 ).

Рис. 8.

Аналогия . Маятник продолжает двигаться вправо - от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода : . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Рис. 9.

Данный момент идентичен моменту , а данный рисунок - рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия . Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими - они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Таким образом,

(1)

Соотношение (1) применяется при решении многих задач.

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1) :

(2)

Здесь, как вы уже поняли, - жёсткость пружины, - масса маятника, и - текущие значения координаты и скорости маятника, и - их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

(3)

(4)

(5)

(6)

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

(7)

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона . Мы вскоре приведём её более строгий вывод.

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими , если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока - ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

Рис. 10. Положительное направление обхода

Сила тока считается положительной class="tex" alt="(I > 0)"> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

Заряд конденсатора - это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае - заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если class="tex" alt="I > 0"> , то заряд левой пластины возрастает, и потому class="tex" alt="\dot{q} > 0"> .

Величины и меняются со временем, но энергия контура остаётся неизменной:

(8)

Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если - функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

Подставляя сюда и , получим:

Но сила тока не является функцией, тождественно равной нулю; поэтому

Перепишем это в виде:

(9)

Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

(10)

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

(11)

Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

(12)

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз - по закону синуса:

(13)

Амплитуда силы тока равна:

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

запишем закон изменения тока (13) в виде:

Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс - резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.

Аналогия между механическими и электромагнитными колебаниями


Колеба́ния
- повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия.

Колебания почти всегда связаны с попеременным превращением энергии одной формы проявления в другую форму.

Классификация по физической природе :


-Механические (звук,вибрация)
-Электромагнитные (свет,радиоволны,тепловые)

Характеристики:

  • Амплитуда - максимальное отклонение колеблющейся величины от некоторого усреднённого её значения для системы, А (м)
  • Период - промежуток времени, через который повторяются какие-либо показатели состояния системы (система совершает одно полное колебание), T (сек)
  • Частота - число колебаний в единицу времени, v (Гц, сек −1) .

Период колебаний T и частота v - обратные величины;

T=1/v и v=1/T

В круговых или циклических процессах вместо характеристики «частота» используется понятие круговая (циклическая) частота W (рад/сек, Гц, сек −1) , показывающая число колебаний за единиц времени:

w = 2П/T = 2ПV

Электромагнитные колебания в контуре имеют сходство со свободными механическими колебаниями (с колебаниями тела,закрепленного на пружине).

Сходство относится к процессам периодического изменения различных величин.
-Характер изменения величин объясняется,имеющейся аналогией в условиях,при которых порождаются механические и электромагнитные колебания.

-Возвращение к положению равновесия тела на пружине вызывается силой упругости,пропорциональной смещению тела от положения равновесия.

Коэффициент пропорциональности -это жесткость пружины k .

Разрядка конденсатора(появление тока) обусловлена напряжением u между пластинами конденсатора,которое пропорционально заряду q .
Коэффициент пропорциональности - 1/С,обратный емкости (так как u = 1/C*q )

Подобно тому как вследствие инертности тело лишь постепенно увеличивает скорость под действием силы и эта скорость после прекращения действия силы не становится сразу равной нулю,электрический ток в катушке за счет явления самоиндукции увеличивается под действием напряжения постепенно и не исчезает сразу,когда это напряжение становится равным нулю.Индуктивность контура L играет ту же роль,что и масса тела m в механике.Соответственно кинетической энергии тела mv(x)^2/2 отвечает энергия магнитного поля тока Li^2/2.

Зарядке конденсатора от батареи соответствует сообщение телу,прикрепленному к пружине,потенциальной энергии при смещении тела (например рукой)на расстоянии Xm от положения равновесия (рис.75,а). Сравнивая это выражение с энергией конденсатора,замечаем,что жесткость К пружины играет при механическом колебательном процессе такую же роль,как величина 1/C,обратная емкости при электромагнитных колебаниях,а начальная координата Xm соответствует заряду Qm.

Возникновение в электрической цепи тока i за счет разности потенциалов соответствует появлению в механической колебательной системе скорости Vx под действием силы упругости пружины (рис.75,б)

Моменту,когда конденсатор разрядится,а сила тока достигнет максимума,соответствует прохождение тела через положение равновесия с максимальной скоростью (рис.75,в)

Далее конденсатор начнет перезаряжаться,а тело -смещаться влево от положения равновесия (рис.75,г). По прошествии половины периода Т конденсатор полностью перезарядится и сила тока станет равной нулю.Этому состоянию соответствует отклонение тела в крайнее левое положение,когда его скорость равна нулю(рис.75,д).