Вывод формулы кинетической энергии вращательного движения. Работа силы при вращении твердого тела. Кинетическая энергия вращающегося тела. Кинетическая энергия при вращательном движении. Момент инерции

Если тело приводится во вращение силой , то его энергия возрастает на величину затраченной работой. Также как и в поступательном движении, эта работа зависит от силы и произведенного перемещения. Однако перемещение теперь угловое и выражение для работы при перемещении материальной точки неприменимо. Т.к. тело абсолютно твердое, то работа силы , хотя она приложена в точке, равна работе, затраченной на поворот всего тела.

При повороте на угол точка приложения силы проходит путь . При этом работа равна произведению проекции силы на направление смещения на величину смещения: ; Из рис. видно, что -плечо силы,а -момент силы.

Тогда элементарная работа: . Если , то .

Работа вращения идёт на увеличение кинетической энергии тела

; Подставив , получим: или с учетом уравнения динамики: , видно, что , т.е. то же самое выражение.

6.Неинерциальные системы отсчёта

Конец работы -

Эта тема принадлежит разделу:

Кинематика поступательного движения

Физические основы механики.. кинематика поступательного движения.. механическое движение формой существования..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Механическое движение
Материя, как известно, существует в двух видах: в виде вещества и поля. К первому виду относятся атомы и молекулы, из которых построены все тела. Ко второму виду относятся все виды полей: гравитаци

Пространство и время
Все тела существуют и движутся в пространстве и времени. Эти понятия являются основополагающими для всех естественных наук. Любое тело имеет размеры, т.е. свою пространственную протяженность

Система отсчета
Для однозначного определения положения тела в произвольный момент времени необходимо выбрать систему отсчета - систему координат, снабженнуя часами и жестко связаннуя с абсолютно твердым телом, по

Кинематические уравнения движения
При движении т.М ее координаты и меняются со временем, поэтому для задания закона движения необходимо указать вид фун

Перемещение, элементарное перемещение
Пусть точка М движется от А к В по криволинейному пути АВ. В начальный момент ее радиус-вектор равен

Ускорение. Нормальное и тангенциальное ускорения
Движение точки характеризуется также ускорением-быстротой изменения скорости. Если скорость точки за произвольное время

Поступательное движение
Простейшим видом механического движения твердого тела является поступательное движение, при котором прямая, соединяющая любые две точки тела перемещается вместе с телом, оставаясь параллельной| сво

Закон инерции
В основе классической механики лежат три закона Ньютона, сформулированные им в сочинении «Математические начала натуральной философии», опубликованном в 1687г. Эти законы явились результатом гениал

Инерциальная система отсчета
Известно, что механическое движение относительно и его характер зависит от выбора системы отсчета. Первый закон Ньютона выполняется не во всех системах отсчета. Например, тела, лежащие на гладком п

Масса. Второй закон Ньютона
Основная задача динамики заключается в определении характеристик движения тел под действием приложенных к ним сил. Из опыта известно, что под действием силы

Основной закон динамики материальной точки
Уравнение описывает изменение движения тела конечных размеров под действием силы при отсутствии деформации и если оно

Третий закон Ньютона
Наблюдения и опыты свидетельствуют о том, что механическое действие одного тела на другое является всегда взаимодействием. Если тело 2 действует на тело 1, то тело 1 обязательно противодействует те

Преобразования Галилея
Они позволяют определить кинематические величины при переходе от одной инерциальной системы отсчета к другой. Возьмем

Принцип относительности Галилея
Ускорение какой-либо точки во всех системах отсчета, движущихся друг относительно друга прямолинейно и равномерно одинаково:

Сохраняющиеся величины
Любое тело или система тел представляют собой совокупность материальных точек или частиц. Состояние такой системы в некоторый момент времени в механике определяется заданием координат и скоростей в

Центр масс
В любой системе частиц можно найти точку, называемую центром масс

Уравнение движения центра масс
Основной закон динамики можно записать в иной форме, зная понятие центра масс системы:

Консервативные силы
Если в каждой точке пространства на частицу, помещенную туда, действует сила, говорят, что частица находится в поле сил, например в поле сил тяжести, гравитационной, кулоновской и других сил. Поле

Центральные силы
Всякое силовое поле вызвано действием определенного тела или системы тел. Сила, действующая на частицу в этом поле об

Потенциальная энергия частицы в силовом поле
То обстоятельство, что работа консервативной силы (для стационарного поля) зависит только от начального и конечного положений частицы в поле, позволяет ввести важное физическое понятие потенциально

Связь между потенциальной энергией и силой для консервативного поля
Взаимодействие частицы с окружающими телами можно описать двумя способами: с помощью понятия силы или с помощью понятия потенциальной энергии. Первый способ более общий, т.к. он применим и к силам

Кинетическая энергия частицы в силовом поле
Пусть частица массой движется в силов

Полная механическая энергия частицы
Известно, что приращение кинетической энергии частицы при перемещении в силовом поле равно элементарной работе всех сил, действующих на частицу:

Закон сохранения механической энергии частицы
Из выражения следует, что в стационарном поле консервативных сил полная механическая энергия частицы может изменяться

Кинематика
Поворот тела на некоторый угол можно

Момент импульса частицы. Момент силы
Кроме энергии и импульса существует ещё одна физическая величина, с которой связан закон сохранения - это момент импульса. Моментом импульса частицы

Момент импульса и момент силы относительно оси
Возьмем в интересующей нас системе отсчета произвольную неподвижную ось

Закон сохранения момента импульса системы
Рассмотрим систему, состоящую из двух взаимодействующих частиц, на которые действуют также внешние силы и

Таким образом, момент импульса замкнутой системы частиц остается постоянным, не изменяется со временем
Это справедливо относительно любой точки инерциальной системы отсчета: . Моменты импульса отдельных частей системы м

Момент инерции твердого тела
Рассмотрим твердое тело, которое мож

Уравнение динамики вращения твердого тела
Уравнение динамики вращения твердого тела можно получить, записав уравнение моментов для твердого тела, вращающегося вокруг произвольной оси

Кинетическая энергия вращающегося тела
Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси, проходящей через него. Разобьем его на частицы с малыми объемами и массами

Центробежная сила инерции
Рассмотрим диск, который вращается вместе с шариком на пружине, надетой на спицу, рис.5.3. Шарик находится

Сила Кориолиса
При движении тела относительно вращающейся СО, кроме, появляется ещё одна сила-сила Кориолиса или кориолисова сила

Малые колебания
Рассмотрим механическую систему, положение которой может быть определено с помощъю одной величины, например х. В этом случае говорят, что система имеет одну степень свободы.Величиной х может быть

Гармонические колебания
Уравнение 2-го Закона Нъютона в отсутствие сил трения для квазиупругой силы вида имеет вид:

Математический маятник
Это материальная точка, подвешенная на нерастяжимой нити длиною, совершающая колебания в вертикальной плоск

Физический маятник
Это твердое тело, совершающее колебания вокруг неподвижной оси, связанной с телом. Ось перпендикулярна рисунку и нап

Затухающие колебания
В реальной колебательной системе имеются силы сопротивления, действие которых приводят к уменьшению потенциальной энергии системы, и колебания будут затухающими.В простейшем случае

Автоколебания
При затухающих колебаниях энергия системы постепенно уменьшается и колебания прекращаются. Для того, чтобы их сделать незатухающими, необходимо пополнять энергию системы извне в определенные момент

Вынужденные колебания
Если колебательная система, кроме сил сопротивления, подвергается действию внешней периодической силы, изменяющейся по гармоническому закону

Резонанс
Кривая зависимости амплитуды вынужденых колебаний от приводит к тому, что при некоторой определенной для данной систе

Распространение волн в упругой среде
Если в каком либо месте упругой среды (твёрдой, жидкой, газообразной) поместить источник колебаний, то из-за взаимодействия между частицами колебание будет распространяться в среде от частицы к час

Уравнение плоской и сферической волн
Уравнение волны выражает зависимость смещения колеблющейся частицы от ее кординат,

Волновое уравнение
Уравнение волны является решением дифференциального уравнения, называемого волновым. Для его установления найдем вторые частные производные по времени и координатам от урав

Рассмотрим твердое тело, которое может вращаться вокруг неподвижной в пространстве оси вращения.

Допустим, что F i – внешняя сила, приложенная к некоторой элементарной массе ∆m i твердого тела и вызывающая вращение. За малый промежуток времени элементарная масса переместится на и следовательно силой будет совершена работа

где a – угол между направлением силы и перемещения. Но равняется F t – проекции силы на касательную к траектории движения массы , а величина . Следовательно

Легко заметить, что произведение является моментом силы относительно заданной оси вращения z и действующим на элемент тела Dm i . Следовательно, работа силы будет равна

Суммируя работу моментов сил, приложенных ко всем элементам тела, получим для элементарно малой энергии, затрачиваемой на элементарно малый поворот тела d j:

, (2.4.27)

где – результирующий момент всех внешних сил, действующих на твердое тело относительно заданной оси вращения z.

Работа за конечный промежуток времени t

. (2.4.28)

Законсохранения момента импульса и изотропность пространства

Законсохранения момента импульса является следствием основного закона динамики вращательного движения. Всистеме из п взаимодействующих частиц (тел) векторная сумма всех внутренних сил, а следовательно и моментов сил, равна нулю, и дифференциальноеуравнение моментов имеет вид

где полный момент импульса всей системы, – результирующий момент внешних сил.

Если система замкнута

откуда следует

что возможно при

Законсохранения момента импульса: Момент импульсазамкнутой системы частиц (тел) остается постоянным .

Законсохранения момента импульса является следствием свойства изотропности пространства, которое проявляется в том, что физические свойства и законы движения замкнутой системы не зависят от выбора направлений осей координат инерциальных систем отсчёта.

В замкнутой системе три физические величины: энергия, импульс и момент импульса (являющиеся функциями координат и скоростей) сохраняются. Такие функции называются интегралами движения. В системе из п частиц существует 6n –1 интегралов движения, но свойством аддитивности обладают лишь три из них – энергия, импульс и момент импульса.

Гироскопический эффект

Массивное симметричное тело, вращающееся с большой угловой скоростью вокруг оси симметрии, называется гироскопом.

Гироскоп, будучи приведен во вращение, стремится сохранить направление своей оси неизменным в пространстве, что является проявлением закона сохранения момента импульса . Гироскоп тем более устойчив, чем больше угловая скорость вращения и чем больше момент инерции гироскопа относительно оси вращения.

Если же к вращающемуся гироскопу приложить пару сил, стремящуюся повернуть его около оси, перпендикулярной к оси вращения гироскопа, то он станет поворачиваться, но только вокруг третьей оси, перпендикулярной первым двум (рис. 21). Этот эффект называется гироскопическим эффектом . Возникающее при этом движениеназывается прецессионным движением или прецессией .

Прецессирует любое тело, вращающееся вокруг некоторой оси, если на него действует момент сил, перпендикулярный оси вращения.

Примером прецессионного движения может служить поведение детской игрушки, которая называется волчком или юлой. Прецессирует также Земля под действием гравитационного поля Луны. Момент сил, действующий на Землю со стороны Луны, определяется геометрической формой Земли – отсутствием сферической симметрии, т.е. с ее «сплюснутостью».

Гироскоп*

Рассмотрим прецессионное движениеподробнее. Такое движениереализует массивный диск, насаженный на вертикальную ось вокруг, которой он вращается. Диск обладает моментом импульса , направленным по оси вращения диска (рис. 22).

У гироскопа, основным элементом которого является диск D , вращающийся со скоростью вокруг горизонтальной оси ОО " возникнет вращающий момент относительно точки C и моментом импульса направлен по оси вращения диск D .

Ось гироскопа шарнирно закреплена в точке C . Прибор снабжен противовесом К. Если противовес установлен так, что точка C является центром масс системы (m – масса гироскопа; m 0 – масса противовеса К ; масса стержня пренебрежимо мала), то без учёта трения запишем:

то есть результирующий момент сил, действующий на систему, равен нулю.

Тогда справедлив закон сохранения момента импульса :

Иными словами, в этом случае const; где J – момент инерции гироскопа, – собственнаяугловая скорость вращения гироскопа.



Поскольку момент инерции диска относительно его оси симметрии есть величина постоянная, то вектор угловой скорости также остается постоянным как по величине, так и по направлению.

Вектор направлен по оси вращения в соответствии с правилом правого винта. Таким образом, ось свободного гироскопа сохраняет своё положение в пространстве неизменным.

Если к противовесу К добавить еще один с массой m 1 , то центр масс системы сместится и возникнет вращающий момент относительно точки C . Согласно уравнению моментов, . Под действием этого вращающего момента вектор момента импульса получит приращение , совпадающее по направлению с вектором :

Векторы сил тяжести и направлены вертикально вниз. Следовательно, векторы , и , лежат в горизонтальной плоскости. Спустя время момент импульса гироскопа изменится на величину и станет равен

Таким образом, вектор изменяет своё направление в пространстве, всё время оставаясь в горизонтальной плоскости. Учитывая, что вектор момента импульса гироскопа направлен вдоль оси вращения, поворот вектора на некоторый угол da за время dt означает поворот оси вращения на тот же угол. В результате ось симметрии гироскопа начнет вращаться вокруг неподвижной вертикальной оси ВВ " с угловой скоростью:

Такое движениеназывается регулярной прецессией , а величина – угловой скоростью прецессии. Если в начальный момент ось ОО " гироскопа установлена не горизонтально, то при прецессии она будет описывать в пространстве конус относительно вертикальной оси. Наличие сил трения приводит к тому, что угол наклона оси гироскопа будет постоянно изменяться. Такое движениеносит название нутации .

Выясним зависимость угловой скорости прецессии гироскопа от основных параметров системы. Спроецируем равенство (123) на горизонтальную ось, перпендикулярную ОО"

Из геометрических соображений (см. рис. 22) при малых углах поворота , тогда , и угловая скорость прецессии выражается:

Это означает, что если прикладывать к гироскопу постоянную внешнюю силу, то он начнет поворачиваться вокруг третьей оси, не совпадающей по направлению с основной осью вращения ротора.

Прецессия, величина которой пропорциональна величине действующей силы, удерживает устройство, ориентированное в вертикальном направлении, причем может быть измерен угол наклона относительно опорной поверхности. Однажды раскрученное устройство стремится сопротивляться изменениям в его ориентации вследствие углового момента. Этот эффект известен в физике также как гироскопическая инерция. В случае прекращения внешнего воздействия прецессия мгновенно заканчивается, но ротор продолжает вращаться.

На диск действует сила тяжести , вызывающая момент силы относительно точки опоры O . Этот момент направлен перпендикулярно оси вращения диска и равен

где l 0 – расстояние от центра тяжестидиска до точки опоры O .

На основании основного закона динамики вращательного движения момент силы вызовет за интервал времени dt изменение момента импульса

Векторы и направлены по одной прямой и перпендикулярны к оси вращения.

Из рис. 22 видно, что конец вектора за время dt переместится на угол

Подставив в это соотношение значения L , dL и М , получим

. (2.4.43)

Таким образом, угловая скорость смещения конца вектора :

и верхний конец оси вращения диска будет описывать окружность в горизонтальной плоскости (рис. 21). Подобное движениетела называется прецессионным, а сам эффект гироскопическим эффектом.


ДЕФОРМАЦИИ ТВЕРДОГО ТЕЛА

Реальные тела не являются абсолютно упругими, поэтому при рассмотрении реальных задач приходится учитывать возможность изменения их формы в процессе движения, т. е. учитывать деформации. Деформация - это изменение формы и размеров твердых тел под действием внешних сил.

Пластическая деформация - это деформация, которая сохраняется в теле после прекращения действия внешних сил. Деформация называется упругой, если после прекращения действия внешних сил тело принимает первоначальные размеры и форму.

Все виды деформаций (растяжение, сжатие, изгиб, кручение, сдвиг) могут быть сведены к одновременно происходящим деформациям растяжения (или сжатия) и сдвига.

Напряжение σ - физическая величина, численно равная упругой силе , приходящейся на единицу площади сечения тела (измеряется в Па):

Если сила направлена по нормали к поверхности, то напряжение нормальное , если - по касательной, то напряжение тангенциальное .

Относительная деформация - количественная мера, характеризующая степень деформации и определяемая отношением абсолютной деформации Δx к первоначальному значению величины x , характеризующей форму или размеры тела: .

- относительное изменение длины l стержня (продольная деформация) ε:

- относительное поперечное растяжение (сжатие) ε′, где d - диаметр стержня.

Деформации ε и ε′ всегда имеют разные знаки: ε′ = −με где μ - положительный коэффициент, зависящий от свойств материала и называемый коэффициентом Пуассона .

Для малых деформаций относительная деформация ε пропорциональна напряжению σ:

где E - коэффициент пропорциональности (модуль упругости), численно равный напряжению, которое возникает при относительной деформации, равной единице.

Для случая одностороннего растяжения (сжатия) модуль упругости называется модулем Юнга . Модуль Юнга измеряется в Па.

Записав , получим - закон Гука :

удлинение стержня при упругой деформации пропорционально действующей на стержень силе (здесь k - коэффициент упругости). Закон Гука справедлив только при малых деформациях.

В отличие от коэффициента жесткости k , являющимся свойством только тела, модуль Юнга характеризует свойства вещества.

У любого тела, начиная с некоторого значения , деформация перестает быть упругой, становясь пластической. Пластичные материалы – материалы, которые не разрушаются при напряжении, значительно превышающем предел упругости. Благодаря свойству пластичности металлы (алюминий, медь, сталь) можно подвергать различной механической обработке: штамповке, ковке, изгибу, растяжению. При дальнейшем увеличении деформации материал разрушается.

Предел прочности – максимальное напряжение, возникающее в теле до его разрушения.

Различие в пределах прочности при сжатии и растяжении объясняется различием процессов взаимодействия молекул и атомов в твердых телах при этих процессах.

Модуль Юнга и коэффициент Пуассона полностью характеризуют упругие свойства изотропного материала. Все прочие упругие постоянные могут быть выражены через E и μ.

Многочисленные опыты показывают, что при малых деформациях напряжение прямо пропорционально относительному удлинению ε (участок ОА диаграммы) – выполняется закон Гука.

Эксперимент показывает, что малые деформации полностью исчезают после снятия нагрузки (наблюдается упругая деформация). При малых деформациях выполняется закон Гука. Максимальное напряжение, при котором еще выполняется закон Гука, называется пределом пропорциональности σ п. Он соответствует точке А диаграммы.

Если продолжать увеличивать нагрузку при растяжении и превзойти предел пропорциональности, то деформация становится нелинейной (линия ABCDEK ). Тем не менее, при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются (участок АВ графика). Максимальное напряжение, при котором еще не возникают заметные остаточные деформации, называется пределом упругости σ уп. Он соответствует точке В диаграммы. Предел упругости превышает предел пропорциональности не более чем на 0,33%. В большинстве случаев их можно считать равными.

Если внешняя нагрузка такова, что в теле возникают напряжения, превышающие предел упругости, то характер деформации меняется (участок BCDEK ). После снятия нагрузки образец не принимает прежние размеры, а остается деформированным, хотя и с меньшим удлинением, чем при нагрузке (пластическая деформация).

За пределом упругости при некотором значении напряжения, соответствующем точке С диаграммы, удлинение возрастает практически без увеличения нагрузки (участок CD диаграммы почти горизонтален). Это явление называется текучестью материала .

При дальнейшем увеличении нагрузки напряжение повышается (от точки D ), после чего в наименее прочной части образца появляется сужение («шейка»). Из-за уменьшения площади сечения (точка Е ) для дальнейшего удлинения нужно меньшее напряжение, но, в конце концов, наступает разрушение образца (точка К ). Наибольшее напряжение, которое выдерживает образец без разрушения, называется пределом прочности ‑ σ пч (оно соответствует точке Е диаграммы). Его значение сильно зависит от природы материала и его обработки.

Рассмотрим деформацию сдвига . Для этого возьмем однородное тело, имеющее форму прямоугольного параллелепипеда, и приложим к его противолежащим граням силы, направленные параллельно этим граням. Если действие сил будет равномерно распределено по всей поверхности соответствующей грани S , то в любом сечении, параллельном этим граням, возникнет тангенциальное напряжение

При малых деформациях объем тела практически не изменится, а деформация состоит в том, что «слои» параллелепипеда сдвигаются относительно друг друга. Поэтому такая деформация называется деформацией сдвига .

При деформации сдвига любая прямая, первоначально перпендикулярная к горизонтальным слоям, повернется на некоторый угол . При этом будет выполняться соотношение

,

где ‑ модуль сдвига , который зависит только от свойств материала тела.

Деформация сдвига относится к однородным деформациям, т. е. когда все бесконечно малые элементы объема тела деформированы одинаковы.

Однако есть неоднородные деформации – изгиба и кручения .

Возьмем однородную проволоку, закрепим ее верхний конец, а к нижнему концу приложим закручивающую силу, создающую вращающий момент М относительно продольной оси проволоки. Проволока закрутится – каждый радиус нижнего основания ее повернется вокруг продольной оси на угол . Такая деформация называется кручением. Закон Гука для деформации кручения записывается в виде

где ‑ постоянная для данной проволоки величина, называемая ее модулем кручения . В отличие от предыдущих модулей, зависит не только от материала, но и от геометрических размеров проволоки.

Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси. Если мысленно разбить это тело на n точек массами m 1 , m 2 , …, m n , находящихся на расстояниях r 1 , r 2 , …, r n от оси вращения, то при вращении они будут описывать окружности и двигаться с различными линейными скоростями v 1 , v 2 , …, v n . Так как тело абсолютно твердое, то угловая скорость вращения точек будет одинакова:

Кинетическая энергия вращающегося тела есть сумма кинетических энергий его точек, т.е.


Учитывая связь между угловой и линейной скоростями, получим:

Сопоставление формулы (4.9) с выражением для кинетической энергии тела, движущегося поступательно со скоростью v , показывает, что момент инерции является мерой инертности тела во вращательном движении .
Если твердое тело движется поступательно со скоростью v и одновременно вращается с угловой скоростью ω вокруг оси, проходящей через его центр инерции, то его кинетическая энергия определяется как сумма двух составляющих:

(4.10)



где v c – скорость центра масс тела; J c - момент инерции тела относительно оси, проходящей через его центр масс.
Моментом силы относительно неподвижной оси z называется скалярная величина M z , равная проекции на эту ось вектора M момента силы, определенного относительно произвольной точки 0 данной оси. Значение момента M z не зависит от выбора положения точки 0 на оси z .
Если ось z совпадает с направлением вектора M , то момент силы представляется в виде вектора, совпадающего с осью:

M z = [rF ] z
Найдем выражение для работы при вращении тела. Пусть сила F приложена к точке В, находящейся от оси вращения на расстоянии r (рис. 4.6); α – угол между направлением силы и радиусом-вектором r . Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела.

При повороте тела на бесконечно малый угол точка приложения В проходит путь ds = rdφ , и работа равна произведению проекции силы на направление смещения на величину смещения:

dA = Fsinα*rdφ
Учитывая, что Frsinα = M z можно записать dA = M z dφ , где M z - момент силы относительно оси вращения. Таким образом, работа при вращении тела равна произведению момента действующей силы на угол поворота.
Работа при вращении тела идет на увеличение его кинетической энергии:

dA = dE k
(4.11)

Уравнение (4.11) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси .

Кинетическая энергия - величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех п материальных точек, на которые это тело можно мысленно разбить: Если тело вращается вокруг неподвижной оси z с угловой скоро- 1 м I 1...
(ФИЗИКА. МЕХАНИКА)
  • Кинетическая энергия вращающегося твёрдого тела
    Кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех п материальных точек (частиц), на которые это тело можно мысленно разбить (рис. 6.8) Если тело вращается вокруг неподвижной оси Oz с угловой скоростью со, то линейная скорость любой /-той частицы,...
    (КЛАССИЧЕСКАЯ И РЕЛЯТИВИСТСКАЯ МЕХАНИКА)
  • Рис. 6.4 Такое движение тела, при котором какие- нибудь две его точки и В на рис. 6.4) остаются неподвижными, называют вращением вокруг неподвижной оси. Можно показать, что в этом случае неподвижной остаётся любая точка тела, лежащая на прямой, соединяющей точки Aw В. Ось,...
    (ТЕОРЕТИЧЕСКАЯ МЕХАНИКА.)
  • Вращение тела вокруг неподвижной оси
    Пусть твёрдое тело за время ск совершило бесконечно малый поворот на угол с/ф относительно неподвижной в данной системе отсчёта оси. Этот угол поворота с/ср является мерой изменения положения тела, вращающегося относительно неподвижной оси. По аналогии с с/r, будем называть с/ф угловым перемещением....
    (ФИЗИКА: МЕХАНИКА, ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ)
  • Аналогия между поступательным и вращательным движением
    Эта аналогия обсуждалась выше и следует из подобия основных уравнений поступательного и вращательного движений. Как ускорение дается производной по времени скорости и второй производной перемещения, так и угловое ускорение дается производной по времени угловой скорости и второй производной углового перемещения....
    (ФИЗИКА)
  • Поступательное и вращательное движение
    Поступательное движение Поступательным называется такое движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается, оставаясь параллельной своему первоначальному положению. Свойства поступательного движения определяются следующей теоремой: при поступательном движении тела...
    (ПРИКЛАДНАЯ МЕХАНИКА)
  • При повороте твердого тела, имеющего ось вращения z, под воздействием момента силы M z относительно оси z совершается работа

    Полная работа при повороте на угол j равна

    При постоянном моменте сил последнее выражение принимает вид:

    Энергия

    Энергия - мера способности тела совершить работу. Движущиеся тела обладают кинетической энергией. Поскольку существуют два основных вида движения - поступательное и вращательное, то кинетическая энергия представлена двумя формулами - для каждого вида движения. Потенциальная энергия - энергия взаимодействия. Убыль потенциальной энергии системы происходит вследствие работы потенциальных сил. Выражения для потенциальной энергии сил тяготения, тяжести и упругости, а также для кинетической энергии поступательного и вращательного движений приведены на схеме. Полная механическая энергия является суммой кинетической и потенциальной.


    Импульс и момент импульса

    Импульсом частицы p называется произведение массы частицы и ее скорости:

    Моментом импульса L относительно точки О называется векторное произведение радиус-вектора r , определяющего положение частицы, и ее импульса p :

    Модуль этого вектора равен:

    Пусть твердое тело имеет неподвижную ось вращения z , вдоль которой направлен псевдовектор угловой скорости w .


    Таблица 6

    Кинетическая энергия, работа, импульс и момент импульса для различных моделей объектов и движений

    Идеальная Физические величины
    модель Кинетическая энергия Импульс Момент импульса Работа
    Материальная точка или твердое тело, движущееся поступательно. m - масса, v - скорость. , . При
    Твердое тело вращается с угловой скоростью w. J - момент инерции, v c - скорость движения центра масс. . При
    Твердое тело совершает сложное плоское движение. J ñ - момент инерции относительно оси, проходящей через центр масс, v c - скорость движения центра масс. w-угловая скорость.

    Момент импульса вращающегося твердого тела совпадает по направлению с угловой скоростью и определяется как

    Определения этих величин (математические выражения) для материальной точки и соответствующие формулы для твердого тела при различных формах движения приведены в таблице 4.

    Формулировки законов

    Теорема о кинетической энергии

    частицы равно алгебраической сумме работ всех сил, действующих на частицу.

    Приращение кинетической энергии системы тел равно работе, которую совершают все силы, действующих на все тела системы:

    . (1)