Оптика дифракционная решетка. Дифракционная решетка. Дифракционный спектр. Разрешающая способность дифракционной решетки

Плоская прозрачная дифракционная решетка представляет собой систему параллельных щелей одинаковой ширины “а”, находящихся на равных расстояниях друг от друга “b” и лежащих в одной плоскости. Она изготавливается путем нанесения непрозрачных штрихов на прозрачной пластине, либо шероховатых, рассеивающих штрихов на тщательно отполированной металлической пластине и применяется в проходящем или отраженном свете. Лучшие дифракционные решетки, изготавливающиеся в настоящее время, содержат до 2000 штрихов на 1 мм. Дешевые копии с таких решеток – реплики, получают на желатине или пластмассе.

Дифракционная картина при прохождении света через дифракционную решетку (систему из N щелей) значительно усложняется. Колебания, приходящие от разных щелей, являются когерентными, и для нахождения результирующей амплитуды и интенсивности необходимо знать фазовые соотношения между ними. Условие ослабления колебаний от одной и той же щели (51) является условием ослабления колебаний для каждой щели дифракционной решетки. Его поэтому называют условием главных минимумов:

Кроме того, происходит взаимодействие колебаний одной щели с колебаниями других щелей. Найдем условие, при котором происходит взаимное усиление колебаний, исходящих из всех щелей. Пусть на дифракционную решетку падает нормально монохроматический свет с длиной волны λ (рисунок 18). Как и в случае одной щели, из всех дифрагирующих волн рассмотрим волны, идущие в направлении угла α к нормали:


Рисунок 18

Оптическая разность хода для волн, исходящих из крайних точек соседних щелей (на рисунке 18 это 1 и 2, 2 и 3, 3 и 4), равна:

, (57)

где а + b = d – период решетки.

Разность фаз для этих же волн определяется соотношением:

. (58)

Для нахождения амплитуды результирующего колебания воспользуемся методом векторных диаграмм. Разобьем каждую щель на отдельные участки - зоны, параллельные краям щели. Амплитуду колебаний, создаваемых одним участком в точке наблюдения, обозначим DA i . Тогда амплитуда результирующих колебаний от всей щели будет равна:

Так как все щели одинаковы и освещаются параллельным пучком лучей, то в точке наблюдения амплитуды результирующих колебаний и от других щелей такие же, т.е.

Поэтому амплитуда результирующего колебания от всех щелей решетки равна их сумме:


Но фазы результирующих колебаний соседних щелей отличаются на Dj (см. условие (58)), поэтому амплитудные вектора располагаются под углом Dj друг к другу, как это показано на рисунке 19, а.


Рисунок 19

Максимальной амплитуда будет в случае, когда амплитудные вектора от каждой щели расположатся вдоль одной прямой (рисунок 19, б),т.е. сдвиг фаз между результирующими колебаниями соседних щелей будет кратен 2p:

где m = 0, 1, 2, …

Условие (60) является условием главных максимумов. Для оптической разности хода оно запишется так (см. (58)):

, (61)

где m – порядок главного максимума, принимает те же значения, что и в условии (60). Наибольший порядок максимума определяется из условия:

.

Амплитуда результирующих колебаний от всех щелей в этом случае будет равна:

где А 1 a – амплитуда результирующих колебаний от одной щели, идущих в направлении угла α, N – число щелей в решетке.

Так как интенсивность пропорциональна квадрату амплитуды, то интенсивность главных максимумов пропорциональна квадрату числа щелей:

, (62)

где I 1 a – интенсивность колебаний, пришедших в данную точку экрана от одной щели.

Условие наибольшего ослабления колебаний от всех щелей, условие дополнительных минимумов, наблюдается в случае, когда амплитуда результирующих колебаний равна 0, т.е. когда суммарный сдвиг фаз колебаний соседних щелей кратен 2p:

, (63)

а оптическая разность хода волн от крайних точек соседних щелей равна:

, (64)

где n = 1, 2, ..., N – 1, N + 1, …, 2N – 1, 2N + 1, ..., mN – 1, mN + 1, … – порядок дополнительных минимумов, N – число щелей в решетке,

В условиях (63) и (64) n не может быть кратно числу щелей, так как они переходят тогда в условия главных максимумов. Из условий (63) и (64) следует, что между соседними главными максимумами наблюдается N – 1 дополнительный минимум и N – 2 дополнительных максимума.

Распределение интенсивности света, наблюдаемое на экране в фокальной плоскости линзы, стоящей за решеткой с четырьмя щелями, представлено на рисунке 20. Пунктирная кривая дает распределение интенсивности одной щели, умноженной на N 2 , сплошная кривая соответствует распределению интенсивности для дифракционной решетки.


Рисунок 20

В центре картины наблюдается максимум нулевого порядка, вправо и влево от него симметрично располагаются последующие порядки максимумов. Ширина максимума нулевого порядка может быть определена так же, как и ширина максимума для одной щели (см. соотношение (56)):

где α – в данном случае угол, под которым наблюдается первый дополнительный минимум т.е.

.

. (65)

Из соотношения (65) следует, что чем больше общее число щелей в решетке, тем уже максимум. Это относится не только к главному максимуму нулевого порядка, но и ко всем главным и дополнительным максимумам.

Некоторые главные максимумы не обнаруживаются, так как они совпадают с главными минимумами (в данном случае максимум второго порядка). При большом числе щелей в решетке интенсивность дополнительных максимумов настолько мала, что они практически не обнаруживаются, и на экране наблюдаются только главные максимумы, расположение которых зависит от постоянной решетки и длины волны падающего на решетку монохроматического света.

При освещении решетки белым светом вместо одиночных главных максимумов первого и более высокого порядков появляются спектры (рисунок 21).


Рисунок 21

Максимум нулевого порядка в спектр не разлагается, так как под углом α = 0 наблюдается максимум для любых длин волн. В спектре каждого порядка максимум для более коротких волн наблюдается ближе к нулевому максимуму, для более длинных – дальше от него.

С ростом порядка спектра спектры становятся шире.

Способность дифракционной решетки разлагать падающий на нее немонохроматический свет в спектр характеризуется угловой или линейной дисперсией. Угловая дисперсия решетки характеризуется углом, на который смещается максимум спектральной линии при изменении длины волны на единицу, т.е.

где Δα – угол, на который смещается максимум при изменении длины волны спектральной линии на Δλ.

Угловая дисперсия зависит от порядка спектра m и постоянной решетки d:

. (67)

Формула (67) получена дифференцированием условия главного максимума, т.е. (61). Линейная дисперсия решетки определяется соотношением:

где Dl – расстояние между двумя спектральными линиями, длины волн которых отличаются на Δλ.

Можно показать, что

где F – фокусное расстояние линзы, с помощью которой наблюдается дифракционная картина.

Другой характеристикой решетки является ее разрешающая спосо6ность. Она определяется отношением длины волны в данной области спектра к минимальному интервалу длин волн, разрешаемому с помощью данной решетки:

По условию Рэлея две близкие спектральные линии считаются разрешенными (видны раздельно) (рисунок 22), если максимум одной совпадает с ближайшим минимумом другой, т.е.

отсюда получаем:

. (70)

Разрешающая способность зависит от порядка спектра и общего числа щелей в решетке.

Способность дифракционной решетки разлагать белый свет в спектр дает возможность использовать её в качестве диспергирующего устройства в спектральных приборах.


Рисунок 22

Зная постоянную решетки и измерив угол дифракции, можно определить спектральный состав излучения неизвестного источника излучения. В данной лабораторной работе дифракционная решетка используется для определения длины волны.

Описание установки

Для точного измерения углов дифракции в данной лабораторной работе используется прибор, называемый гониометром. Схематическое устройство гониометра приведено на рисунке 23.

Основные части гониометра: закрепленные на общей оси круг с делениями – лимб, коллиматор, зрительная труба и столик с дифракционной решеткой.

Коллиматор предназначен для создания параллельного пучка лучей. Он состоит из наружного тубуса, в котором закреплена линза Л, и внутреннего с входной щелью S. Ширина щели может регулироваться микрометрическим винтом. Щель располагается в фокальной плоскости линзы Л, поэтому из коллиматора выходит параллельный пучок лучей.


Рисунок 23

Зрительная труба также состоит из двух тубусов: наружного, в котором закреплен объектив М, и внутреннего с закрепленным в нем окуляром N. В фокальной плоскости объектива располагается визирная нить. Если прибор отъюстирован, то визирная нить и изображение освещенной щели коллиматора в поле зрения окуляра видны отчетливо.

Лимб разделен на 360 градусов, расстояние между градусными делениями разделено на две части по 30 минут каждая, т.е. цена деления лимба 30 минут. Для более точного отсчета углов имеется нониус Н, имеющий 30 делений, общая длина которых составляет 29 делений лимба. Поэтому точность деления нониуса Dl равна:

,

так как ,

где l – цена деления лимба, n – число делений нониуса,

с – цена деления нониуса.

Если цена деления лимба 30 минут и нониус содержит 30 делений, то точность деления нониуса равна одной минуте.

Отсчет угла гониометра производят следующим образом. Отмечают число целых делений по шкале лимба напротив нуля нониуса (отсчет берется от нуля нониуса), затем делают отсчет по шкале нониуса: выбирают такое деление нониуса, которое совпадает с каким-либо делением шкалы лимба. Измеренный угол будет равен:

, (71)

где k – число делений по шкале лимба;

m – число делений нониуса до деления, точно совпадающего с делением шкалы лимба;

l – цена деления лимба;

Δl – точность нониуса.

Для случая, приведенного на рисунке 24, число делений лимба до 0 нониуса 19,5, что соответствует 19 градусам и 30 минутам.


Рисунок 24

Нуль нониуса не совпадает с делениями лимба, совпадает пятое деление нониуса. Следовательно, угол отсчета равен 19 градусам и 35 минутам.

На столике гониометра закреплена дифракционная решетка так, что ее плоскость, обращенная к зрительной трубе, совпадает с диаметром столика. Столик гониометра устанавливается таким образом, чтобы дифракционная решетка была перпендикулярна оси коллиматора. Щель коллиматора освещается ртутной лампой.

Если зрительная труба установлена по оси коллиматора, то в поле зрения видно изображение щели – главный максимум нулевого порядка. При смещении зрительной трубы вправо или влево можно увидеть сначала синюю, затем зеленую и желтую линии спектра первого порядка. При дальнейшем поворачивании зрительнойтрубы в ее полезрения окажутся в той жепоследовательности спектральные линиивторого порядка, затем третьего и т.д.

Для определения угла дифракции какой-либо волны необходимо навести визирную нить зрительной трубы на середину линии соответствующего цвета слева от нулевого максимума, закрепить винт, фиксирующий положение трубы, и произвести отсчет угла, например b 1 , затем, освободив винт, навести визирную нить зрительной трубы на середину линии такого же цвета в том же порядке спектра справа от нулевого максимумаи, закрепив винт, сделать отсчет угла b 2 . Разность отсчетов даст удвоенный угол дифракции (рисунок 25), а угол дифракции будет равен:


Рисунок 25

Первые опыты и активные исследования природы света начались еще в далеком XVII веке, когда итальянский ученый Франческо Гримальди впервые открыл такое интересное физическое явление как дифракция света. Что же такое дифракция света? Это отклонение света от прямолинейного распространения в силу определенных препятствий на его пути. Более научное объяснение причинам дифракции света было дано в начале XIX века английским ученым Томасом Юнгом, согласно нему дифракция света возможна благодаря тому, что свет представляет собой волну, идущую от своего источника и естественным образом искривляющуюся при попадании на определенные препятствия. Им же была изобретена первая дифракционная решетка, представляющая собой оптический прибор, работающий на основе дифракции света, то есть специально искривляющий световую волну.

Дифракция и интерференция света

Изучая поведение монохроматического пучка света, Томас Юнг, разделив его пополам, получил дифракционную картину, которая представляла собой последовательное чередование ярких и темных полос на экране. Волновая теория природы света, сформированная Юнгом, прекрасно объясняла это явление. Будучи волной, пучок света при попадании на непрозрачное препятствие искривляется, меняет траекторию своего движения. Так появляется дифракция света, при которой свет может, как целиком огибать препятствия (если длина световой волны больше размеров препятствия) или искривлять свою траекторию (когда размеры препятствий сопоставимы с длиной световой волны). Примером тут может быть попадание света через узкие щели или небольшие отверстия, как на фото ниже.

Луч света в пещере, наглядная иллюстрация дифракции света в природе.

А тут на картинке показано более схематическое изображение дифракции.

Физическое явление дифракции света дополняет еще одно важное свойство световой волны – интерференция света. Суть интерференции света заключается в накладывании одних световых волн на другие. В результате может происходить искривление синусоидальной формы результирующей волны.

Так схематически выглядит интерференция.

При этом, волны, которые накладываются, могут, как усиливать мощь общей световой волны (при совпадении амплитуд), так и наоборот погасить ее.

Как мы писали выше, дифракционная решетка представляет собой простой оптический прибор, который искривляет световую волну.

Вот так она выглядит.

Или еще чуть более маленький экземпляр.

Также дифракционную решетку можно охарактеризовать тремя параметрами:

  • Период d. Он представляет собой расстояние между двумя щелями, через которые проходит свет. Так как длина световой волны обычно находится в диапазоне нескольких десятых микрометра, то величина d обычно имеет 1 микрометр.
  • Постоянная решетка а. Это количество прозрачных щелей на длине 1 мм поверхности решетки. Эта величина обратно пропорциональна периоду дифракционной решетки d. Обычно имеет 300-600 мм -1
  • Общее количество щелей N. Высчитывается путем умножения длины дифракционной решетки на ее постоянную а. Обычно длина решетки имеет несколько сантиметров, а количество щелей при этом составляет 10-20 тысяч.

Виды дифракционных решеток

На самом деле есть целых два вида дифракционных решеток: прозрачная и отражающая.

Прозрачная решетка представляет собой прозрачную тонкую пластину из стекла или прозрачного пластика, на которую нанесены штрихи. Штрихи эти как раз и являются препятствиями для световой волны, сквозь них она не может пройти. Ширина штриха – это и есть, по сути, период дифракционной решетки d. А оставшиеся между штрихами прозрачные зазоры – это щели. Такие решетки наиболее часто применяются при выполнении лабораторных работ.

Отражающая дифракционная решетка – это либо пластиковая и отполированная пластина. Вместо штрихов на нее нанесены бороздки определенной глубины. Период d соответственно это расстояние между этими бороздками. Простым примером отражающей дифракционной решетки может быть оптический CD диск.

Такие решетки часто используют при анализе спектров излучения, так как благодаря их дизайну можно удобно распределить интенсивность максимумов дифракционной картины на пользу максимумов более высокого порядка.

Принцип работы дифракционной решетки

Представим, что на нашу решетку падает свет, имеющий плоский фронт. Это важный момент, так как классическая формула будет верна при условии, что волновой фронт является плоским и параллельным самой пластинке. Штрихи решетки будут вносить в этот световой фронт возмущение и как результат на выходе из решетки создаться ситуация будто бы работает множество когерентных (синхронных) источников излучения. Эти источники и являются причиной дифракции.

От каждого источника (по сути щели между штрихами решетки) будут распространяться световые волны, которые будут когерентными (синхронными) друг другу. Если на некотором расстоянии от решетки поместить экран, то мы сможем увидеть на нем яркие полосы, между которыми будет тень.

Формула дифракционной решетки

Яркие полосы, которые мы увидим на экране можно также назвать максимумами решетки. Если рассматривать условия усиления световых волн, то можно вывести формулу максимума дифракционной решетки, вот она.

sin(θ m) = m*λ/d

Где θ m это углы между перпендикуляром к центру пластинки и направлением на соответствующую линию максимума на экране. Величина m называется порядком дифракционной решетки. Она принимает целые значения и ноль, то есть m = 0, ±1, 2, 3 и так далее. λ – длина световой волны, а d – период решетки.

Разрешающая способность дифракционной решетки

Разрешающей способностью называют способность решетки разделить две волны с близкими значениями длины λ на два отдельных максимума на экране.

Применение дифракционной решетки

Какое же практическое применение дифракционной решетки, в чем ее конкретная польза? Дифракционная решетка является важным и незаменимым инструментов в спектроскопии, так с ее помощью можно узнать, например, химический состав далекой звезды. Свет, идущий от этой звезды, собирают зеркалами и направляют на решетку. Измеряя значения θ m можно узнать все длины волн спектра, а значит и химические элементы, которые их излучают.

Дифракция света и дифракционная решетка, видео

И в завершение интересное образовательное видео по теме нашей статьи от заслуженного учителя Украины – Павла Виктора, на наш взгляд его видео лекции на Ютубе по физике могут быть очень полезными для всех, кто изучает этот предмет.


При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту [email protected] или в Фейсбук, с уважением автор.

ОПРЕДЕЛЕНИЕ

Дифракционная решетка - это простейший спектральный прибор, состоящий из системы щелей (прозрачных для света участков), и непрозрачных промежутков, которые сравнимы с длиной волны.

Одномерная дифракционная решетка, состоит из параллельных щелей одинаковой ширины, которые лежат в одной плоскости, разделяемых одинаковыми по ширине непрозрачными для света промежутками. Лучшими считаются отражательные дифракционные решетки. Они состоят из совокупности участков, отражающих свет и участков, которые свет рассеивают. Данные решетки представляют собой отшлифованные металлические пластины, на которые рассеивающие свет штрихи нанесены резцом.

Картиной дифракции на решетке — является результат взаимной интерференции волн, идущих ото всех щелей. С помощью дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, подвергшихся дифракции и которые идут от всех щелей.

Характеристикой дифракционной решетки служит ее период. Периодом дифракционной решетки (d) (ее постоянной) называют величину, равную:

где a — ширина щели; b — ширина непрозрачного участка.

Дифракция на одномерной дифракционной решетке

Допустим, что перпендикулярно к плоскости дифракционной решетки падает световая волна с длиной . Так как щели у решетки расположены на равных расстояниях друг от друга, то разности хода лучей (), идущих от двух соседних щелей, для направления будут одинаковы для всей рассматриваемой дифракционной решетки:

Главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

Кроме главных минимумов, в результате взаимной интерференции лучей света, которые идут от двух щелей, в некоторых направлениях лучи гасят друг друга. В результате возникают дополнительные минимумы интенсивности. Они появляются в тех направлениях, где разность хода лучей составляют нечетное число полуволн. Условием дополнительных минимумов является формула:

где N - количество щелей дифракционной решетки; — целые значения кроме 0, В том случае, если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки является:

Величина синуса не может быть больше единицы, то количество главных максимумов:

Примеры решения задач по теме «Дифракционная решетка»

ПРИМЕР 1

Задание На дифракционную решетку, перпендикулярно ее поверхности падает монохроматический пучок света с длиной волны . На плоский экран картина дифракции проецируется при помощи линзы. Расстояние между двумя максимумами интенсивности первого порядка составляет l. Какова постоянная дифракционной решетки, если линза размещена в непосредственной близости от решетки и расстояние от нее до экрана равно L. Считайте, что


Решение В качестве основы для решения задачи используем формулу, которая связывает постоянную дифракционной решетки, длину волны света и угол отклонения лучей, который соответствует дифракционному максимуму номер m:

По условию задачи Так как угол отклонения лучей можно считать малым (), то примем, что:

Из рис.1 следует, что:

Подставим в формулу (1.1) выражение (1.3) и учтем, что , получим:

Из (1.4) выразим период решетки:

Ответ

ПРИМЕР 2

Задание Используя условия примера 1, и результат решения, найдите количество максимумов, которое даст рассматриваемая решетка.
Решение Для того чтобы определить максимальный угол отклонения лучей света в нашей задаче найдем число максимумов, которое может дать наша дифракционная решетка. Для этого используем формулу:

где положим, что при . Тогда, получим:

Дифракционная решетка — оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равноотстоящих друг от друга, щелей.

Дифракционную решетку можно получить нанесением непрозрачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места — щели — будут пропускать свет; штрихи, соответствующие промежутку между щелями, рассеивают и не пропускают света. Сечение такой дифракционной решетки (а ) и ее условное обозначение (б) показаны на рис. 19.12. Суммарную ширину щели а и промежутка б между щелями называют постоянной или периодом дифракционной решетки:

с = а + б. (19.28)

Если на решетку падает пучок когерентных волн, то вторичные волны, идущие по всевозможным направлениям, будут интерферировать, формируя дифракционную картину.

Пусть на решетку нормально падает плоскопараллельный пучок когерентных волн (рис. 19.13). Выберем некоторое направление вторичных волн под углом a относительно нормали к решетке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода d = А"В". Такая же разность хода будет для вторич-ных волн, идущих от соответственно расположенных пар точек соседних щелей. Если эта разность хода кратна целому числу длин волн, то при интерференции возникнут главные максимумы, для которых выполняется условие ÷А"В ¢÷= ± k l, или

с sin a = ± k l, (19.29)

где k = 0,1,2,... — порядок главных максимумов. Они расположены симметрично относительно центрального (k = 0, a = 0). Равенство (19.29) является основной формулой дифракционной решетки.

Между главными максимумами образуются минимумы (добавочные), число которых зависит от числа всех щелей решетки. Выведем условие для добавочных минимумов. Пусть разность хода вторичных волн, идущих под углом a от соответственных тoчек соседних щелей, равна l/N, т. е.

d = с sin a= l/N, (19.30)

где N — число щелей дифракционной решетки. Этой разности хода 5 [см. (19.9)] отвечает разность фаз Dj= 2 p/N.

Если считать, что вторичная волна от первой щели имеет в момент сложения с другими волнами нулевую фазу, то фаза волны от второй щели равна 2 p/N, от третьей — 4 p/N, от четвертой — 6p/N и т. д. Результат сложения этих волн с учетом фазового различия удобно получить с помощью векторной диаграммы: сумма N одинаковых векторов напряженности электрического поля, угол (разность фаз) между любыми соседними из которых есть 2 p/N, равна нулю. Это означает, что условие (19.30) соответствует минимуму. При разности хода вторичных волн от соседних щелей d = 2(l/N) илиразности фаз Dj = 2(2p/N) будет также получен минимум интерференции вторичных волн, идущих от всех щелей, и т. д.


В качестве иллюстрации на рис. 19.14 изображена векторная диаграмма, соответствующая дифракционной решетке, состоящей из шести щелей: и т. д. — векторы напряженности электрической составляющей электромагнитных волн от первой, второй и т. д. щелей. Возникающие при интерференции пять добавочных минимумов (сумма векторов равна нулю) наблюдаются при разности фаз волн, приходящих от соседних щелей, в 60° (а ), 120° (б), 180° (в), 240° (г) и 300° (д).

Рис. 19.14

Так, можно убедиться, что между центральным и каждым первым главным максимумами имеется N -1 добавочных минимумов, удовлетворяющих условию

с sin a = ± l/N ; 2l/N, ..., ± (N - 1)l/N. (19.31)

Между первым и вторым главными максимумами также расположены N - 1 добавочных минимумов, удовлетворяющих условию

с sin a = ± (N + 1)l/N, ± (N + 2)l/N, ..., (2N - 1)l/N, (19.32)

и т. д. Итак, между любыми двумя соседними главными максимумами наблюдается N - 1 добавочных минимумов.

При большом количестве щелей отдельные добавочные минимумы практически не различаются, а все пространство между главными максимумами выглядит темным. Чем больше число щелей дифракционной решетки, тем более резки главные максимумы. На рис. 19.15 представлены фотографии дифракционной картины, полученной от решеток с разным числом N щелей (постоянная дифракционной решетки одинакова), а на рис. 19.16 — график распределения интенсивности.

Особо отметим роль минимумов от одной щели. В направлении, отвечающем условию (19.27), каждая щель дает минимум, поэтому минимум от одной щели сохранится и для всей решетки. Если для некоторого направления одновременно выполняются условия минимума для щели (19.27) и главного максимума решетки (19.29), то соответствующий главный максимум не возникнет. Обычно стараются использовать главные максимумы, которые размещаются между первыми минимумами от одной щели, т. е. в интервале

arcsin (l/a ) > a > - arcsin (l/a ) (19.33)

При падении на дифракционную решетку белого или иного немонохроматического света каждый главный максимум, кроме центрального, окажется разложенным в спектр [см. (19.29)]. В этом случае k указывает порядок спектра.

Таким образом, решетка является спектральным прибором, поэтому для нее существенны характеристики, которые позволяют оценивать возможность различения (разрешения) спектральных линий.

Одна из таких характеристик — угловая дисперсия — определяет угловую ширину спектра. Она численно равна угловому расстоянию da между двумя линиями спектра, длины волн которых различаются на единицу (dl. = 1):

D = da/ dl.

Дифференцируя (19.29) и используя только положительные значения величин, получаем

с cos a da = ..k dl.

Из последних двух равенств имеем

D = ..k /(c cos a). (19.34)

Так как обычно используют небольшие углы дифракции, то cos a » 1. Угловая дисперсия D тем выше, чем больше порядок k спектра и чем меньше постоянная с дифракционной решетки.

Возможность различать близкие спектральные линии зависит не только от ширины спектра, или угловой дисперсии, но и от ширины спектральных линий, которые могут накладываться друг на друга.

Принято считать, что если между двумя дифракционными максимумами одинаковой интенсивности находится область, где суммарная интенсивность составляет 80% от максимальной, то спектральные линии, которым соответствуют эти максимумы, уже разрешаются.

При этом, согласно Дж. У. Рэлею, максимум одной линии совпадает с ближайшим минимумом другой, что и считается критерием разрешения. На рис. 19.17 изображены зависимости интенсивности I отдельных линий от длины волны (сплошная кривая) и их суммарная интенсивность (штриховая кривая). Из рисунков легко увидеть неразрешенность двух линий (а ) и предельную разрешенность (б ), когда максимум одной линии совпадает с ближайшим минимумом другой.

Разрешение спектральных линий количественно оценивается разрешающей способностью, равной отношению длины волны к наименьшему интервалу длин волн, которые еще могут быть разрешены:

R = l./ Dl.. (19.35)

Так, если имеются две близкие линии с длинами волн l 1 ³ l 2 , Dl = l 1 - l 2 , то (19.35) можно приближенно записать в виде

R = l 1 /(l 1 - l 2), или R = l 2 (l 1 - l 2) (19.36)

Условие главного максимума для первой волны

с sin a = k l 1 .

С ним совпадает ближайший минимум для второй волны, условие которого

с sin a = k l 2 + l 2 /N.

Приравнивая правые части последних двух равенств, имеем

k l 1 = k l 2 + l 2 /N, k (l 1 - l 2) = l 2 /N,

откуда [с учетом (19.36)]

R = k N .

Итак, разрешающая способность дифракционной решетки тем больше, чем больше порядок k спектра и число N штрихов.

Рассмотрим пример. В спектре, полученном от дифракционной решетки с числом щелей N = 10 000, имеются две линии вблизи длины волны l = 600 нм. При какой наименьшей разности длин волн Dl эти линии различаются в спектре третьего порядка (k = 3)?

Для ответа на этот вопрос приравняем (19.35) и (19.37), l/Dl = kN, откуда Dl = l/(kN ). Подставляя числовые значения в эту формулу, находим Dl = 600 нм/(3 . 10 000) = 0,02 нм.

Так, например, различимы в спектре линии с длинами волн 600,00 и 600,02 нм и не различимы линии с длинами волн 600,00 и 600,01 нм

Выведем формулу дифракционной решетки для наклонного падения когерентных лучей (рис. 19.18, b — угол падения). Условия формирования дифракционной картины (линза, экран в фокальной плоскости) те же, что и при нормальном падении.

Проведем перпендикуляры А"В кпадающим лучам и АВ" ко вторичным волнам, идущим под углом a к перпендикуляру, восставленному к плоскости решетки. Из рис. 19.18 видно, что к положению А¢В лучи имеют одинаковую фазу, от АВ" и далее разность фаз лучей сохраняется. Следовательно, разность хода есть

d = ВВ"-АА". (19.38)

Из D АА"В имеем АА¢ = АВ sin b = с sin b. Из DВВ"А находим ВВ" = АВ sin a = с sin a. Подставляя выражения для АА¢ и ВВ" в (19.38) и учитывая условие для главных максимумов, имеем

с (sin a - sin b) = ± kl. (19.39)

Центральный главный максимум соответствует направлению падающих лучей (a= b).

Наряду с прозрачными дифракционными решетками используют отражательные, у которых штрихи нанесены на металлическую поверхность. Наблюдение при этом ведется в отраженном свете. Отражательные дифракционные решетки, изготовленные на вогнутой поверхности, способны образовывать дифракционную картину без линзы.

В современных дифракционных решетках максимальное число штрихов составляет более 2000 на 1 мм, а длина решетки более 300 мм, что дает значение N около миллиона.

При перпендикулярном (нормальном) падении параллельного пучка монохроматического света на дифракционную решётку на экране в фокальной плоскости собирающей линзы, расположенной параллельно дифракционной решётке, наблюдается неоднородная картина распределения освещённости разных участков экрана (дифракционная картина).

Главные максимумы этой дифракционной картины удовлетворяют следующим условиям:

где n - порядок главного дифракционного максимума, d - постоянная (период) дифракционной решётки, λ - длина волны монохроматического света, φ n - угол между нормалью к дифракционной решётке и направлением на главный дифракционный максимум n -го порядка.

Постоянная (период) дифракционной решётки длиной l

где N - количество щелей (штрихов), приходящихся на участок дифракционной решётки длиной I.

Наряду с длиной волны часто используется частота v волны.

Для электромагнитных волн (света) в вакууме

где с = 3 *10 8 м/с - скорость распространения света в вакууме.

Выделим из формулы (1) наиболее трудно математически определяемые формулы для порядка главных дифракционных максимумов:

где обозначает целую часть числа d*sin(φ/λ).

Недоопределённые аналоги формул (4, а,б) без символа [...] в правых частях содержат в себе потенциальную опасность подмены физически обоснованной операции выделения целой части числа операцией округления числа d*sin(φ/λ) до целочисленного значения по формальным математическим правилам.

Подсознательная тенденция (ложный след) подмены операции выделения целой части числа d*sin(φ/λ) операцией округления

этого числа до целочисленного значения по математическим правилам ещё более усиливается, когда речь идёт о тестовых заданиях типа В на определение порядка главных дифракционных максимумов.

В любых тестовых заданиях типа В численные значения искомых физических величин по договорённости округляются до целочисленных значений. Однако в математической литературе нет единых(го) правил(а) округления чисел.

В справочной книге В. А. Гусева, А. Г. Мордковича по математике для учащихся и белорусском учебном пособии Л. А. Латотина, В. Я. Чеботаревского по математике для IV класса приводятся по существу одни и те же два правила округления чисел. В они сформулированы так: "При округлении десятичной дроби до какого-нибудь разряда все следующие за этим разрядом цифры заменяются нулями, а если стоят после запятой, то их отбрасывают. Если первая следующая за этим разрядом цифра больше или равна пяти, то последнюю оставшуюся цифру увеличивают на 1. Если же первая следующая за этим разрядом цифра меньше 5, то последнюю оставшуюся цифру не изменяют".

В справочнике М. Я. Выгодского по элементарной математике , выдержавшем двадцать семь (!) изданий, написано (с. 74): "Правило 3. Если отбрасывается цифра 5, а за ней нет значащих цифр, то округление производится до ближайшего чётного числа, т.е. последняя сохраняемая цифра остаётся неизменной, если она чётная, и усиливается (увеличивается на 1), если она нечётная".

Ввиду существования различных правил округления чисел следовало бы правила округления десятичных чисел явно сформулировать в "Инструкции для учащихся", прилагаемой к заданиям централизованного тестирования по физике. Это предложение приобретает дополнительную актуальность, так как в белорусские вузы поступают и проходят обязательное тестирование не только граждане Беларуси и России, но и других стран, и заведомо неизвестно, какими правилами округления чисел они пользовались при обучении в своих странах.

Во всех случаях округление десятичных чисел будем производить по правилам , приведённым в , .

После вынужденного отступления, возвратимся к обсуждению рассматриваемых физических вопросов.

С учётом нулевого (n = 0) главного максимума и симметричного расположения остальных главных максимумов относительно него общее количество наблюдаемых главных максимумов от дифракционной решётки подсчитывается по формулам:

Если расстояние от дифракционной решётки до экрана, на котором наблюдается дифракционная картина, обозначить через Н, то координата главного дифракционного максимума n -го порядка при отсчёте от нулевого максимума равна

Если то (радиан) и

Задачи на рассматриваемую тему часто предлагают на тестированиях по физике.

Начнём обзор с рассмотрения российских тестов, использовавшихся белорусскими вузами на начальном этапе, когда тестирование в Беларуси было необязательным и проводилось отдельными учебными заведениями на свой страх и риск как альтернатива обычной индивидуальной письменно-устной форме проведения вступительных экзаменов.

Тест № 7

А32. Наибольший порядок спектра, который можно наблюдать при дифракции света с длиной волны λ на дифракционной решётке с периодом d=3,5λ равен

1) 4; 2) 7; 3) 2; 4) 8; 5) 3.

Решение

Монохроматическим светом ни о каких спектрах не может быть и речи. В условии задачи речь должна идти о главном дифракционном максимуме наибольшего порядка при перпендикулярном падении монохроматического света на дифракционную решётку.

По формуле (4, б)

Из недоопределённого условия

на множестве целых чисел, после округления получаем n mах =4.

Только благодаря несовпадению целой части числа d/λ с его округлённым целочисленным значением правильное решение (n mах =3) отличается от неправильного (n max =4) на тестовом уровне.

Изумительная миниатюра, несмотря на огрехи формулировки, с филигранно выверенным по всем трём версиям округления чисел ложным следом!

А18. Если постоянная дифракционной решётки d= 2 мкм, то для нормально падающего на решётку белого света 400 нм <λ < 700 нм наибольший полностью наблюдаемый порядок спектра равен

1)1; 2)2; 3)3; 4)4; 5)5.

Решение

Очевидно, что n сп =min(n 1max , n 2max )

По формуле (4, б)

Округляя числа d/λ до целочисленных значений по правилам - , получаем:

Благодаря тому, что целая часть числа d/λ 2 отличается от его округлённого целочисленного значения, данное задание позволяет на тестовом уровне объективно отличить правильное решение (n сп = 2) от неправильного (n сп =3). Прекрасная задача с одним ложным следом!

ЦТ 2002 г. Тест № 3

В5. Найдите наибольший порядок спектра для жёлтой линии Na (λ = 589 нм), если постоянная дифракционной решётки d = 2 мкм.

Решение

Задание сформулировано научно некорректно. Во-первых, при освещении дифракционной решётки монохроматическим светом, как уже отмечалось выше, не может быть и речи о спектре (спектрах). В условии задачи речь должна идти о наибольшем порядке главного дифракционного максимума.

Во-вторых, в условии задания должно быть указано, что свет падает нормально (перпендикулярно) на дифракционную решётку, ибо только этот частный случай рассматривается в курсе физики средних общеобразовательных учреждений. Считать это ограничение подразумевающимся по умолчанию нельзя: в тестах все ограничения должны быть указаны явно ! Тестовые задания должны представлять собою самодостаточные, научно корректные задания.

Число 3,4, округлённое до целочисленного значения по правилам арифметики - , также даёт 3. Именно поэтому данное задание следует признать простым и, по большому счёту, неудачным, так как на тестовом уровне оно не позволяет объективно различить правильное решение, определяемое по целой части числа 3,4, от неправильного решения, определяемого по округлённому целочисленному значению числа 3,4. Различие обнаруживается только при подробном описании хода решения, что и сделано в данной статье.

Дополнение 1. Решите вышеприведённую задачу, заменив в её условии d=2 мкм на d= 1,6 мкм. Ответ: n max = 2.

ЦТ 2002 г. Тест 4

В5 . На дифракционную решётку направляется свет от газоразрядной лампы. На экране получаются дифракционные спектры излучения лампы. Линия с длиной волны λ 1 = 510 нм в спектре четвёртого порядка совпадает с линией длины волны λ 2 в спектре третьего порядка. Чему равна λ 2 (в [нм])?

Решение

В данной задаче основной интерес представляет не решение задачи, а формулировка её условия.

При освещении дифракционной решётки немонохроматическим светом(λ 1 , λ 2 ) вполне естественно говорить (писать) о дифракционных спектрах, которых в принципе нет при освещении дифракционной решётки монохроматическим светом.

В условии задания следовало бы указать, что свет от газоразрядной лампы падает нормально на дифракционную решётку.

Кроме того, следовало бы изменить филологический стиль третьего предложения в условии задания. Режет слух оборот "линия с длиной волны λ "" , его можно было бы заменить на "линия, соответствующая излучению длиной волны λ "" или на более краткий - "линия, соответствующая длине волны λ "" .

Формулировки тестов должны быть научно корректными и литературно безупречными. Тесты формулируют совсем не так, как исследовательские и олимпиадные задачи! В тестах всё должно быть точно, конкретно, однозначно.

С учётом приведённого уточнения условия задания имеем:

Так как по условию задания то

ЦТ 2002 г. Тест № 5

В5. Найдите наибольший порядок дифракционного максимума для жёлтой линии натрия с длиной волны 5,89·10 -7 м, если период дифракционной решётки равен 5 мкм.

Решение

По сравнению с заданием В5 из теста № 3 ЦТ 2002 г. данное задание сформулировано точнее, тем не менее в условии задания речь следовало бы вести не о "дифракционном максимуме", а о "главном дифракционном максимуме ".

Наряду с главными дифракционными максимумами всегда имеются ещё и вторичные дифракционные максимумы . Не объясняя этого нюанса в школьном курсе физики, тем более надо строго соблюдать сложившуюся научную терминологию и вести речь только о главных дифракционных максимумах.

Кроме того, следовало бы указать, что свет падает нормально на дифракционную решётку.

С учётом вышеприведённых уточнений

Из неопределённого условия

по правилам математического округления числа 8,49 до целочисленного значения опять же получаем 8. Поэтому данное задание, как и предыдущее, следует признать неудачным.

Дополнение 2 . Решите вышеприведённое задание, заменив в его условии d =5 мкм на (1=А мкм. Ответ: n max =6.)

Пособие РИКЗ 2003 г. Тест № 6

В5. Если второй дифракционный максимум находится на расстоянии 5 см от центра экрана, то при увеличении расстояния от дифракционной решётки до экрана на 20% этот дифракционный максимум будет находиться на расстоянии... см.

Решение

Условие задания сформулировано неудовлетворительно: вместо "дифракционный максимум" надо "главный дифракционный максимум", вместо "от центра экрана" - "от нулевого главного дифракционного максимума".

Как видно из приведённого рисунка,

Отсюда

Пособие РИКЗ 2003 г. Тест № 7

В5. Определите наибольший порядок спектра в дифракционной решётке, имеющей 500 штрихов на 1 мм, при освещении её светом с длиной волны 720 нм.

Решение

Условие задания сформулировано крайне неудачно в научном отношении (см. уточнения заданий № 3 и 5 из ЦТ 2002 г.).

Есть претензии и к филологическому стилю формулировки задания. Вместо словосочетания "в дифракционной решётке" надо было бы использовать словосочетание "от дифракционной решётки", а вместо "свет с длиной волны" - "светом, длина волны которого". Длина волны - не нагрузка к волне, а её основная характеристика.

С учётом уточнений

По всем трём вышеприведённым правилам округления чисел округление числа 2,78 до целочисленного значения даёт 3.

Последний факт даже при всех недостатках формулировки условия задания делает его интересным, так как позволяет на тестовом уровне различить правильное (n max =2) и неправильное (n max =3) решения.

Много заданий на рассматриваемую тему содержится в ЦТ 2005 г. .

В условиях всех этих заданий (В1) надо добавить ключевое слово "главный" перед словосочетанием "дифракционный максимум" (см. комментарии к заданию В5 ЦТ 2002 г. Тест № 5).

К сожалению, во всех вариантах тестов В1 ЦТ 2005 г. численные значения d (l,N) и λ подобраны неудачно и всегда дают в дробях

число "десятых" меньше 5, что не позволяет на тестовом уровне отличить операцию выделения целой части дроби (правильное решение) от операции округления дроби до целочисленного значения (ложный след). Это обстоятельство ставит под сомнение целесообразность использования этих заданий для объективной проверки знаний абитуриентов по рассматриваемой теме.

Похоже на то, что составители тестов увлеклись, образно говоря, приготовлением различных "гарниров к блюду", не думая об улучшении качества основной компоненты "блюда" - подборе численных значений d (l,N) и λ с целью увеличения числа "десятых" в дробях d/λ=l/(N* λ).

ЦТ 2005 г. Вариант 4

В1. На дифракционную решётку, период которой d 1 =1,2 мкм, падает нормально параллельный пучок монохроматического света с длиной волны λ =500 нм. Если её заменить на решётку, период которой d 2 =2,2 мкм, то число максимумов увеличится на... .

Решение

Вместо "свет с длиной волны λ"" надо "свет длиной волны λ "" . Стиль, стиль и ещё раз стиль!

Так как

то с учётом того, что X - const, a d 2 >di,

По формуле (4, б)

Следовательно, ΔN общ. max =2(4-2)=4

При округлении чисел 2,4 и 4,4 до целочисленных значений тоже получаем соответственно 2 и 4. По этой причине данное задание следует признать простым и даже неудачным.

Дополнение 3 . Решите вышеприведённую задачу, заменив в её условии λ =500 нм на λ =433 нм (синяя линия в спектре водорода).

Ответ: ΔN общ. max =6

ЦТ 2005 г. Вариант 6

В1 . На дифракционную решётку с периодом d= 2 мкм падает нормально параллельный пучок монохроматического света с длиной волны λ =750 нм. Количество максимумов, которые можно наблюдать в пределах угла а =60°, биссектриса которого перпендикулярна плоскости решётки, равно... .

Решение

Словосочетание "света с длиной волны λ " уже обсуждалось выше в ЦТ 2005 г., вариант 4.

Второе предложение в условии данного задания можно было бы упростить и записать так: "Количество наблюдаемых главных максимумов в пределах угла а = 60°" и далее по тексту исходного задания.

Очевидно, что

По формуле (4, а)

По формуле (5, а)

Это задание, как и предыдущее, не позволяет на тестовом уровне объективно определить уровень понимания обсуждаемой темы абитуриентами.

Дополнение 4. Выполните вышеприведённое задание, заменив в его условии λ =750 нм на λ = 589 нм (жёлтая линия в спектре натрия). Ответ: N o6щ =3.

ЦТ 2005 г. Вариант 7

В1. На дифракционную решётку, имеющую N 1 - 400 штрихов на l =1 мм длины, падает параллельный пучок монохроматического света с длиной волны λ =400 нм. Если её заменить решёткой, имеющей N 2 =800 штрихов на l =1 мм длины, то количество дифракционных максимумов уменьшится на... .

Решение

Опустим обсуждение неточностей формулировки задания, так как они те же, что и в предыдущих заданиях.

Из формул (4, б), (5, б) следует, что