Пример построения стохастической модели процесса. Метод построения стохастических моделей одношаговых процессов демидова анастасия вячеславовна. Классификация методов моделирования и моделей может проводиться по степени подробности моделей, по характеру п

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Демидова Анастасия Вячеславовна. Метод построения стохастических моделей одношаговых процессов: диссертация... кандидата физико-математических наук: 05.13.18 / Демидова Анастасия Вячеславовна;[Место защиты: Российский университет дружбы народов].- Москва, 2014.- 126 с.

Введение

Глава 1. Обзор работ по теме диссертации 14

1.1. Обзор моделей популяционной динамики 14

1.2. Стохастические популяционные модели 23

1.3. Стохастические дифференциальные уравнения 26

1.4. Сведения по стохастическому исчислению 32

Глава 2. Метод моделирования одношаговых процессов 39

2.1. Одношаговые процессы. Уравнение Колмогорова-Чепмена. Основное кинетическое уравнение 39

2.2. Метод моделирования многомерных одношаговых процессов. 47

2.3. Численное моделирование 56

Глава 3. Применение метода моделирования одношаговых процессов 60

3.1. Стохастические модели популяционной динамики 60

3.2. Стохастические модели популяционных систем с различными меж- и внутривидовыми взаимодействиями 75

3.3. Стохастическая модель распространения сетевых червей. 92

3.4. Стохастические модели пиринговых протоколов 97

Заключение 113

Литература 116

Стохастические дифференциальные уравнения

Одной из задач диссертации является задача записи стохастического дифференциального уравнения для системы так, чтобы стохастический член был связан со структурой изучаемой системы. Одно из возможных решений этой задачи - это получение стохастической и детерминистической частей из одного и тоже уравнения. Для этих целей удобно использовать основное кинетическое уравнение, которое может быть аппроксимировано уравнением Фоккера-Планка, для которого,в свою очередь, можно записать эквивалентное ему стохастическое дифференциальное уравнение в форме уравнения Ланжевена.

Раздел 1.4. содержит основные сведения, необходимые для обозначения связи между стохастическим дифференциальным уравнением и уравнением Фоккера-Планка, а также основные понятия стохастического исчисления.

Во второй главе приводятся основные сведения из теории случайных процессов и на основе этой теории формулируется метод моделирования одношаговых процессов.

В разделе 2.1 приведены основные сведения из теории случайных одношаговых процессов.

Под одношаговыми процессами понимаются марковские процессы с непрерывным временем, принимающие значения в области целых чисел, матрица перехода которых допускает только переходы между соседними участками.

Рассматривается многомерный одношаговый процесс Х() = (i(),2(), ...,n()) = { j(), = 1, } , (0.1) изменяющийся по на отрезке , т.е. Є , где - длина временного интервала, на котором задан процесс Х(). Множество G = {х, = 1, Є NQ х NQ1 - это множество дискретных значений, которые может принимать случайный процесс.

Для данного одношагового процесса вводятся вероятности переходов в единицу времени s+ и s из состояния Xj в состояние Xj__i и Xj_i соответственно. При этом считается, что вероятность перехода из состояния х на два или белее шагов за единицу времени очень мала. Поэтому можно говорить, что вектор Xj состояния системы изменяются шагами длины Г{ и тогда вместо переходов из х в Xj+i и Xj_i можно рассматривать переходы из X в X + Гі и X - Гі соответственно.

При моделировании систем, в которых временная эволюция происходит в результате взаимодействия элементов системы удобно описывать с помощью основного кинетического уравнения, (другое название управляющее уравнение , а в англоязычной литературе носит название Master equation ).

Далее встает вопрос, как получить описание исследуемой системы, описываемой одношаговыми процессами, с помощью стохастического дифференциального уравнения в форме уравнения Ланжевена из основного кинетиче 11 ского уравнения. Формально к стохастическим уравнениям следует отнести лишь уравнения, содержащие стохастические функции. Таким образом, этому определению удовлетворяют лишь уравнения Ланжевена. Однако они связаны непосредственно с другими уравнениями, а именно с уравнением Фоккера-Планка и основным кинетическим уравнением. Поэтому представляется логичным рассматривать все эти уравнения в совокупности. Поэтому для решения этой задачи предлагается аппроксимировать основное кинетическое уравнение уравнением Фоккера-Планка, для которого можно записать эквивалентное ему стохастическое дифференциальное уравнение в форме уравнения Ланжевена.

В разделе 2.2 формулируется метод описания и стохастического моделирования систем, описываемых многомерными одношаговыми процессами.

Кроме того, показано, что коэффициенты для уравнения Фоккера-Планка можно получить сразу после записи для изучаемой системы схемы взаимодействия, вектора изменения состояния r и выражений для вероятностей перехода s+ и s-, т.е. при практическом применении данного метода нет необходимости записывать основное кинетическое уравнение.

В разделе 2.3. рассмотрен метод Рунге-Кутта для численного решения стохастических дифференциальных уравнений, который используется в третьей главе для иллюстрации полученных результатов.

В третьей главе представлена иллюстрация применения, описанного во второй главе метода построения стохастических моделей, на примере систем описывающих динамику роста взаимодействующих популяций, таких как «хищник-жертва», симбиоз, конкуренция и их модификации. Целью является записать их в виде стохастических дифференциальных уравнений и исследовать влияние введения стохастики на поведение системы.

В разделе 3.1. проиллюстрировано применение описанного во второй главе метода на примере модели «хищник-жертва». Системы с взаимодействием двух видов популяций типа «хищник-жертва» широко исследованы, что позволяет сравнить полученные результаты с уже хорошо известными.

Анализ полученных уравнений показал, что для исследования детерминистического поведения системы, можно использовать вектор сносов A полученного стохастического дифференциального уравнения, т.е. разработанный метод можно использовать для анализа как стохастического, так и детерминистического поведения. Кроме того сделан вывод, что стохастические модели дают более реалистичное описание поведения системы. В частности, для системы «хищник-жертва» в детерминистическом случае, решения уравнений имеют периодический вид и фазовый объем сохраняется, в то время как, введение стохаcтики в модель, дает монотонное возрастание фазового объема, что говорит о неизбежной гибели одной либо обеих популяций. В целях визуализации полученных результатов было проведено численное моделирование.

В разделе 3.2. разработанный метод применяется для получения и анализа различных стохастических моделей популяционной динамики, таких как модель «хищник–жертва» с учётом межвидовой конкуренции среди жертв, симбиоз, конкуренция и модель взаимодействия трех популяций.

Сведения по стохастическому исчислению

Развитие теории случайных процессов привело к переходу в исследования природных явлений от детерминистических представлений и моделей популяционной динамики к вероятностным и как следствие, появление большого числа работ посвященных стохастическому моделированию в математической биологии, химии, экономике и д.р.

При рассмотрении детерминистических популяционных моделей остаются не охваченными такие важные моменты, как случайные влияния различных факторов на эволюцию системы. Описывая популяционную динамику следует учитывать случайный характер размножения и выживания особей, а также случайные колебания, которые происходят в среде со временем и приводят к случайным флуктуациям параметров системы. Поэтому во всякую модель динамики популяций следует вводить вероятностные механизмы, отражающие эти моменты.

Стохастическое моделирование позволяет более полно описать изменения популяционных характеристик с учетом как всех детерминистских факторов, так и случайных эффектов, которые могут существенно изменить выводы из детерминистских моделей. С другой стороны с их помощью можно выявить качественно новые стороны поведения популяции.

Стохастические модели изменения состояний популяции можно описывать с помощью случайных процессов. При некоторых допущениях можно считать, что поведение популяции при условии ее настоящего состояния не зависит от того, каким образом это состояние было достигнуто (т.е. при фиксированном настоящем будущее не зависит от прошлого). Т.о. для моделирования процессов популяционной динамики удобно использовать марковские процессы рождения-гибели и соответствующие управляющие уравнения, которые подробно описаны во второй части работы.

Н. Н. Калинкин в своих работах для иллюстрации процессов происходящих в системах с взаимодействующими элементами использует схемы взаимодействия и на базе этих схем строит модели этих систем используя аппарат ветвящихся марковских процессов. Применение такого подхода иллюстрируется на примере моделирования процессов в химических, популяционных, телекоммуникационных и др. системах.

В работе рассматриваются вероятностные популяционные модели, для построения которых используется аппарат процессов рождения-гибели, а получившиеся системы дифференциально-разностных уравнений представляют собой динамические уравнения для случайных процессов. Также в работе рассмотрены методы нахождения решений данных уравнений.

Можно найти много статей посвященных построению стохастических моделей учитывающих различные факторы влияющие на динамику изменения численности популяций. Так,например, в статьях построена и проанализирована модель динамики численности биологического сообщества, в котором особи потребляют пищевые ресурсы, содержащие вредные вещества. А в модели эволюции популяции в статье учитывается фактор расселения представителей популяций в ареалах их обитания. Модель представляет собой систему самосогласованных уравнений Власова.

Стоит отметить работы , которые посвящены теории флуктуа-ций и применению стохастических методов в естественных науках, таких как физика, химия, биология и др. В частности, математическая модель изменения численности популяций, взаимодействующих по типу «хищник-жертва» строиться на базе многомерных марковских процессов рождения-гибели.

Можно рассматривать модель «хищник–жертва» как реализацию процессов рождения–гибели. В такой трактовке возможно их применение для моде 26 лей во многих областях науки. В 70-е годы М. Дои предложена методика изучения таких моделей на основе операторов рождения–уничтожения (по аналогии со вторичным квантованием). Здесь можно отметить работы . Кроме того сейчас этот метод активно развивается в группе М. М. Гнатича .

Еще один подход к моделированию и изучению моделей популяцион-ной динамики связан с теорией оптимального управления. Здесь можно отметить работы .

Можно отметить, что большинство работ посвященных построению стохастических моделей популяционных процессов использует аппарат случайных процессов для получение дифференциально-разностных уравнений и последующей численной реализации. Кроме того широко применяется стохастические дифференциальные уравнения в форме Ланжевена, в которых стохастический член добавляется из общих соображений о поведении системы и призван описать случайные воздействия окружающей среды . Дальнейшим исследованием модели является их качественный анализ или нахождение решений с помощью численных методов.

Стохастические дифференциальные уравнения Определение 1. Стохастическое дифференциальное уравнение - это дифференциальное уравнение, в котором один член или более представляют собой стохастический процесс. Наиболее используемый и хорошо известный пример стохастического дифференциального уравнения (СДУ) - это уравнение с членом, который описывает белый шум и его можно рассматривать как винеровский процесс Wt, t 0.

Стохастические дифференциальные уравнения являются важным и широко используемым математическим аппаратом при изучении и моделировании динамических систем, которые подвержены различным случайным возмущениям.

Началом стохастического моделирования природных явлений принято считать описание явления броуновского движения, которое открыто Р. Броуном в 1827 году, когда он проводил исследования движения пыльцы растений в жидкости. Первое строгое объяснение этого явления независимо друг от друга дали А. Эйнштейн и М. Смолуховский. Стоит отметить сборник статей в котором собраны работы А. Эйнштейна и М. Смолухов-ского по броуновскому движению. Эти исследования внесли значительный вклад в развитие теории броуновского движения и ее экспериментальную проверку. А. Эйнштейном была создана молекулярно-кинетическая теория для количественного описания броуновского движения. Полученные формулы были подтверждены опытами Ж. Перрена в 1908-1909 гг.

Метод моделирования многомерных одношаговых процессов.

Для описания эволюции систем с взаимодействующими элементами существует два подхода - это построение детерминистической или стохастической моделей. В отличии от детерминистических, стохастические модели позволяют учесть вероятностный характер процессов происходящих в изучаемых системах, а также воздействия внешней среды, которые вызывают случайные флуктуации параметров модели.

Предметом изучения являются системы, процессы происходящие в которых могут быть описаны с помощью одношаговых процессов и таких, в которых переход их одного состояния в другое связан с взаимодействием элементов системы. Примером могут служить модели описывающие динамику роста взаимодействующих популяций, такие как «хищник-жертва», симбиоз, конкуренция и их модификации. Целью является записать для таких систем СДУ и исследовать влияние введения стохастической части на поведение решения уравнения, описывающего детерминистическое поведение.

Химическая кинетика

Системы уравнений, возникающие при описании систем с взаимодействующими элементами, во многом близки системам дифференциальных уравнений, описывающих кинетику химических реакций. Так, например, система Лотки-Вольтерра была первоначально выведена Лоткой как систе 48 ма, описывающая некоторую гипотетическую химическую реакцию, и лишь позже Вольтерра вывел ее как систему, описывающую модель «хищник-жертва».

Химическая кинетика описывает химические реакции с помощью, так называемых стехиометрических уравнений - уравнений отражающих количественные соотношения реагентов и продуктов химической реакции и имеющих следующий общий вид : где натуральные числа ті и Щ называются стехиометрическими коэффициентами. Это символическая запись химической реакции, в которой ті молекул реагента Xi, ni2 молекул реагента Хч, ..., тр молекул реагента Хр, вступив в реакцию образуют щ молекул вещества Уї, щ молекул вещества І2, ..., nq молекул вещества Yq соответственно.

В химической кинетике полагается, что химическая реакция может происходить только при непосредственном взаимодействии реагентов, а скорость химической реакции определяется как число частиц образовавшихся в единицу времени в еденице объема.

Основным постулатом химической кинетики является закон действующих масс, который говорит о том, что скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях их стехиометрических коэффициентов. Поэтому, если обозначить через ХІ и у І концентрации соответствующих веществ, то имеем уравнение для скорости изменения концентрации какого-либо вещества во времени в результате химической реакции :

Далее предлагается использовать основные идеи химической кинетики для описания систем, эволюция во времени которых происходит в результате взаимодействия друг с другом элементов данной системы, внеся следующие основные изменения: 1. рассматриваются не скорости реакций, а вероятности переходов; 2. предлагается, что вероятность перехода из одного состояния в другое, являющегося следствием взаимодействия, пропорциональна числу возможных взаимодействий данного типа; 3. для описания системы в данном методе используется основное кинетическое уравнение; 4. детерминистические уравнения заменяются стохастическими. Подобный подход к описанию таких систем можно найти в работах . Для описания процессов происходящих в моделируемой системе предполагается использовать, как уже отмечалось выше, марковские одношаговые процессы.

Рассмотрим систему состоящую из типов различных элементов, которые могут взаимодействовать между собой различными способами. Обозначим через элемент -того типа, где = 1, а через - количество элементов -того типа.

Пусть (), .

Сделаем предположение, что файл состоит из одной части. Таким образом за один шаг взаимодействия нового узла, желающего скачать файл, и узла, раздающего файл, новый узел скачивает весь файл и становится раздающим узлом.

Пусть - это обозначение нового узла, - это раздающий узел, а - коэффициент взаимодействия. Новые узлы могут приходить в систему с интенсивностью, а раздающие узлы уходить из нее с интенсивностью. Тогда схема взаимодействия и вектор г будет иметь вид:

Стохастическое дифференциальное уравнение в форме Ланжевена мож 100 но получить воспользовавшись соответствующей формулой (1.15). Т.к. вектор сносов A полностью описывает детермистическое поведеие системы можно получить систему обыкновеных дифференциальных уравнений, описывающих динамику численности новых клиентов и сидов:

Таким образом, в зависимости от выбора параметров особая точка может иметь разный характер. Так при /ЗА 4/І2 особая точка является устойчивым фокусом, а при обратном соотношении - устойчивый узел. В обоих случаях особая точка является устойчивой, так как выбора значений коэффициентов, изменения переменных системы может происходить по одной из двух траекторий. Если особая точка является фокусом, то в системе происходят затухающие колебания численностей новых и раздающих узлов (см. рис. 3.12). А в узловом случае приближение численностей к стационарным значениям происходит в бесколебательном режиме (см. рис. 3.13). Фазовые портреты системы для каждого из двух случаев изображены, соответственно, на графиках(3.14) и (3.15).

4. Схема построения стохастических моделей

Построение стохастической модели включает разработку, оценку качества и исследование поведения системы с помощью уравнений, описывающих изучаемый процесс. Для этого путем проведения специального эксперимента с реальной системой добывается исходная информация. При этом используются методы планирования эксперимента, обработки результатов, а также критерии оценки полученных моделей, базирующиеся на таких разделах математической статистики как дисперсионный, корреляционный, регрессионный анализ и др.

Этапы разработки стохастической модели:

    постановка задачи

    выбор факторов и параметров

    выбор вида модели

    планирование эксперимента

    реализация эксперимента по плану

    построение статистической модели

    проверка адекватности модели (связана с 8, 9, 2, 3, 4)

    корректировка модели

    исследование процесса с помощью модели (связано с 11)

    определение параметров оптимизации и ограничений

    оптимизация процесса с помощью модели (связана с 10 и 13)

    экспериментальная информация средств автоматики

    управление процессом с помощью модели (связано с 12)

Объединение этапов с 1 по 9 дает нам информационную модель, с первого по одиннадцатый – оптимизационная модель, объединение всех пунктов – модель управления.

5. Инструментальные средства обработки моделей

С помощью CAE-систем можно производить следующие процедуры обработки моделей:

    наложение сетки конечных элементов на 3-х мерную модель,

    задачи теплонапряженного состояния; задачи гидрогазодинамики;

    задачи тепломассообмена;

    контактные задачи;

    кинематические и динамические расчеты и др.

    имитационное моделирование сложных производственных систем на основе моделей массового обслуживания и сетей Петри

Обычно CAE-модули дают возможность цветного и полутонового изображения, наложения исходной и деформированной детали, визуализации потоков жидкости и газа.

Примеры систем моделирования полей физических величин в соответствии с МКЭ: Nastrаn, Ansys, Cosmos, Nisa, Moldflow.

Примеры систем моделирования динамических процессов на макроуровне: Adams и Dyna - в механических системах, Spice - в электронных схемах, ПА9 - для многоаспектного моделирования, т.е. для моделирования систем, принципы действия которых основаны на взаимовлиянии физических процессов различной природы.

6. Математическое моделирование. Аналитические и имитационные модели

Математическая модель - совокупность математических объектов (чисел, переменных, множеств и др.) и отношений между ними, которая адекватно отображает некоторые (существенные) свойства проектируемого технического объекта. Математические модели могут быть геометрическими, топологическими, динамическими, логическими и др.

- адекватность представления моделируемых объектов;

Область адекватности - область в пространстве параметров, в пределах которой погрешности модели остаются в допустимых приделах.

- экономичность (вычислительная эффективность) - определяется затратами ресурсов,
требуемых для реализации модели (затраты машинного времени, используемая память и др.);

- точность - определяет степень совпадения расчетных и истинных результатов (степень соответствия оценок одноименных свойств объекта и модели).

Математическое моделирование - процесс построения математических моделей. Включает следующие этапы: постановка задачи; построение модели и ее анализ; разработка методов получения проектных решений на модели; экспериментальная проверка и корректировка модели и методов.

Качество создаваемых математических моделей во многом зависит от правильной постановки задачи. Необходимо определить технико-экономические цели решаемой задачи, провести сбор и анализ всей исходной информации, определить технические ограничения. В процессе построения моделей следует использовать методы системного анализа.

Процесс моделирования, как правило, носит итерационный характер, который предусматривает на каждом шаге итераций уточнение предыдущих решений, принятых на предшествующих этапах разработки моделей.

Аналитические модели - численные математические модели, которые можно представить в виде явно выраженных зависимостей выходных параметров от параметров внутренних и внешних. Имитационные модели - численные алгоритмические модели, отображающие процессы в системе при наличии внешних воздействий на систему. Алгоритмические модели - модели, в которых связь выходных, внутренних и внешних параметров задана неявно в виде алгоритма моделирования. Имитационные модели используют часто на системном уровне проектирования. Имитационное моделирование производят путем воспроизведения событий, происходящих одновременно или последовательно в модельном времени. Примером имитационной модели может считаться использование сети Петри для моделирования системы массового обслуживания.

7. Основные принципы построения математических моделей

Классический (индуктивный) подход. Реальный объект, подлежащий моделированию, разбивается на отдельные подсистемы, т.е. выбираются исходные данные для моделирования и ставятся цели, отображающие отдельные стороны процесса моделирования. По отдельной совокупности исходных данных ставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некоторая компонента будущей модели. Совокупность компонент объединяется в модель.

Такой классический подход может быть использован при создании достаточно простых моделей, в которых возможно разделение и взаимно независимое рассмотрение отдельных сторон функционирования реального объекта. Реализует движение от частного к общему.

Системный подход. На основе исходных данных, которые известны из анализа внешней системы, тех ограничений, которые накладываются на систему сверху либо исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требования к модели системы. На базе этих требований формируются ориентировочно некоторые подсистемы, элементы и осуществляется наиболее сложный этап синтеза – выбор составляющих системы, для чего используются специальные критерии выбора. Системный подход предполагает и некоторую последовательность разработки моделей, заключающуюся в выделении двух основных стадий проектирования: макропроектирование и микропроектирование.

Стадия макропроектирования – на основе данных о реальной системе и внешней среде строится модель внешней среды, выявляются ресурсы и ограничения для построения модели системы, выбирается модель системы и критерии, позволяющие оценить адекватность модели реальной системы. Построив модель системы и модель внешней среды, на основе критерия эффективности функционирования системы в процессе моделирования выбирают оптимальную стратегию управления, что позволяет реализовать возможность модели по воспроизведению отдельных сторон функционирования реальной системы.

Стадия микропроектирования в значительной степени зависит от конкретного типа выбранной модели. В случае имитационной модели необходимо обеспечить создание информационного, математического, технического и программного обеспечения системы моделирования. На этой стадии можно установить основные характеристики созданной модели, оценить время работы с ней и затраты ресурсов для получения заданного качества соответствия модели процессу функционирования системы .Независимо от типа используемой модели
при ее построении необходимо руководствоваться рядом принципов системного подхода:

    пропорционально-последовательное продвижение по этапам и направлениям создания модели;

    согласование информационных, ресурсных, надежностных и других характеристик;

    правильное соотношение отдельных уровней иерархии в системе моделирования;

    целостность отдельных обособленных стадий построения модели.

      Анализ применяемых методов при математическом моделировании

При математическом моделировании решение дифференциальных или интегро-дифференциальных уравнений с частными производными выполняется численными методами. Эти методы основаны на дискретизации независимых переменных - их представлении конечным множеством значений в выбранных узловых точках исследуемого пространства. Эти точки рассматриваются как узлы некоторой сетки.

Среди сеточных методов наибольшее распространение получили два метода: метод конечных разностей (МКР) и метод конечных элементов (МКЭ). Обычно выполняют дискретизацию пространственных независимых переменных, т.е. используют пространственную сетку. В этом случае результатом дискретизации является система обыкновенных дифференциальных уравнений, которые затем при использовании краевых условий приводятся к системе алгебраических уравнений.

Пусть необходимо решить уравнениеLV (z ) = f (z )

с заданными краевыми условиямиMV (z ) = .(z ),

где L и M - дифференциальные операторы, V (z ) - фазовая переменная, z = (x 1, x 2, x 3, t ) - вектор независимых переменных, f (z ) и ψ.(z ) - заданные функции независимых переменных.

В МКР алгебраизация производных по пространственным координатам базируется на аппроксимации производных конечно-разностными выражениями. При использовании метода нужно выбрать шаги сетки по каждой координате и вид шаблона. Под шаблоном понимают множество узловых точек, значения переменных в которых используются для аппроксимации производной в одной конкретной точке.

МКЭ основан на аппроксимации не производных, а самого решения V (z ). Но поскольку оно неизвестно, то аппроксимация выполняется выражениями с неопределенными коэффициентами.

При этом речь идет об аппроксимациях решения в пределах конечных элементов, а с учетом их малых размеров можно говорить об использовании сравнительно простых аппроксимирующих выражений (например, - полиномы низких степеней). В результате подстановки таких полиномов в исходное дифференциальное уравнение и выполнения операций дифференцирования получают значения фазовых переменных в заданных точках.

Полиномиальная аппроксимация. Использование методов связано с возможностью аппроксимации гладкой функции полиномом и последующего использования аппроксимирующего полинома для оценивания координаты точки оптимума. Необходимыми условиями эффективной реализации такого подхода являются унимодальность и непрерывность исследуемой функции. Согласно теореме Вейерштрасса об аппроксимации, если функция непрерывна в некотором интервале, то ее с любой степенью точности можно аппроксимировать полиномом достаточно высокого порядка. Согласно теореме Вейерштрасса, качество оценок координаты точки оптимума, получаемых с помощью аппроксимирующего полинома, можно повысить двумя способами: использованием полинома более высо­кого порядка и уменьшением интервала аппроксимации. Простейшим вариантом полиномиальной интерполяции является квадратичная аппроксимация, которая основана на том факте, что функция, принимающая минимальное значение во внутренней точке интервала, должна быть по крайней мере квадратичной

Дисциплина «Модели и методы анализа проектных решений» (Казаков Ю.М.)

    Классификация математических моделей.

    Уровни абстракции математических моделей.

    Требования к математическим моделям.

    Схема построения стохастических моделей.

    Инструментальные средства обработки моделей.

    Математическое моделирование. Аналитические и имитационные модели.

    Основные принципы построения математических моделей.

    Анализ применяемых методов при математическом моделировании.

1. Классификация математических моделей

Математическая модель (ММ) технического объекта есть совокупность математических объектов (чисел, пере­менных, матриц, множеств и т. п.) и отношений между ними, которая адекватно отображает свойства технического объекта, интересующие инженера, разрабатывающего этот объект.

По характеру отображения свойств объекта:

    Функциональные – предназначены для отображения физических или информационных процессов, протекающих в технических системах при их функционировании. Типичная функциональная модель представляет собой систему уравнений, описывающих либо электрические, тепловые, механические процессы, либо процессы преобразования информации.

    Структурные – отображают структурные свойства объекта (топологические, геометрические). . Струк­турные модели чаще всего представляются в виде графов.

По принадлежности к иерархическому уровню:

    Модели микроуровня – отображение физических процессов в непрерывном пространстве и времени. Для моделирования применяют аппарат урав­нений математической физики. Примерами таких уравне­ний служат дифференциальные уравнения в частных про­изводных.

    Модели макроуровня. Используются укрупнение, детализация пространства по фундаментальному признаку. Функциональные модели на макроуровне представля­ют собой системы алгебраических или обыкновенных диф­ференциальных уравнений, для их получения и решения используют соответствующие численные методы.

    Модели метоуровня. Укрупнено описывают рассматриваемые объекты. Математические модели на метауровне - системы обыкновенных дифференциальных уравнений, системы логических уравнений, имитационные модели систем массового обслуживания.

По способу получения модели:

    Теоретические – строятся на основании изучения закономерности. В отличии от эмпирических моделей, теоретические в большинстве случаев являются более универсальными и применимыми для более широкого диапазона задач. Теоретические модели бывают линейными и нелинейными, непрерывными и дискретными, динамическими и статистическими.

    Эмпирические

Главные требования к математическим моделям в САПР:

    адекватность представления моделируемых объектов;

Адекватность имеет место, если модель отражает заданные свойства объекта с приемлемой точностью и оценивается перечнем отражаемых свойств и областями адекватности. Область адекватности – область в пространстве параметров, в пределах которой погрешности модели остаются в допустимых приделах.

    экономичность (вычислительная эффективность) – определяется затратами ресурсов, требуемых для реализации модели (затраты машинного времени, используемая память и др.);

    точность – определяет степень совпадения расчетных и истинных результатов (степень соответствия оценок одноименных свойств объекта и модели).

К математическим моделям предъявляется и целый ряд других требований:

    Вычислимость , т.е. возможность ручного или с помощью ЭВМ исследования качественных и количественных закономерностей функционирования объекта (системы).

    Модульность , т.е. соответствие конструкций модели структурным составляющим объекта (системы).

    Алгоритмизируемость , т.е. возможность разработки соответствующего алгоритма и программы, реализующей математическую модель на ЭВМ.

    Наглядность , т.е. удобное визуальное восприятие модели.

Таблица. Классификация математических моделей

Признаки классификации

Виды математических моделей

1. Принадлежность к иерархическому уровню

    Модели микроуровня

    Модели макроуровня

    Модели метауровня

2. Характер отображаемых свойств объекта

    Структурные

    Функциональные

3. Способ представления свойств объекта

    Аналитические

    Алгоритмические

    Имитационные

4. Способ получения модели

    Теоретические

    Эмпирические

5. Особенности поведения объекта

    Детерминированные

    Вероятностные

Математические модели на микроуровне производственного процесса отражают физические процессы, протекающие, например, при резании металлов. Они описывают процессы на уровне перехода.

Математические модели на макроуровне производственного процесса описывают технологические процессы.

Математические модели на метауровне производственного процесса описывают технологические системы (участки, цехи, предприятие в целом).

Структурные математические модели предназначены для отображения структурных свойств объектов. Например, в САПР ТП для представления структуры технологического процесса, расцеховки изделий используется структурно – логические модели.

Функциональные математические модели предназначены для отображения информационных, физических, временных процессов, протекающих в работающем оборудовании, в ходе выполнения технологических процессов и т.д.

Теоретические математические модели создаются в результате исследования объектов (процессов) на теоретическом уровне.

Эмпирические математические модели создаются в результате проведения экспериментов (изучения внешних проявлений свойств объекта с помощью измерения его параметров на входе и выходе) и обработки их результатов методами математической статистики.

Детерминированные математические модели описывают поведение объекта с позиций полной определенности в настоящем и будущем. Примеры таких моделей: формулы физических законов, технологические процессы обработки деталей и т.д.

Вероятностные математические модели учитывают влияние случайных факторов на поведение объекта, т.е. оценивают его будущее с позиций вероятности тех или иных событий.

Аналитические модели - численные математические модели, которые можно представить в виде явно выраженных зависимостей выходных параметров от параметров внутренних и внешних.

Алгоритмические математические модели выражают связи между выходными параметрами и параметрами входными и внутренними в виде алгоритма.

Имитационные математические модели – это алгоритмические модели, отражающие развитие процесса (поведение исследуемого объекта) во времени при задании внешних воздействий на процесс (объект). Например, это модели систем массового обслуживания, заданные в алгоритмической форме.

Серия «Экономика и управление»

6. Кондратьев Н.Д. Большие циклы конъюнктуры и теория предвидения. - М.: Экономика, 2002. 768 с.

7. Кузык Б.Н., Кушлин В.И., Яковец Ю.В. Прогнозирование, стратегическое планирование и национальное программирование. М.: Изд-во «Экономика», 2008. 573 с.

8. Лясников Н.В., Дудин М.Н. Модернизация инновационной экономики в контексте формирования и развития венчурного рынка // Общественные науки. М.: Издательство «МИИ Наука», 2011. № 1. С. 278-285.

9. Секерин В.Д., Кузнецова О.С. Разработка стратегии управления инновационным проектом // Вестник Московской государственной академии делового администрирования. Серия: Экономика. - 2013. № 1 (20). - С. 129 - 134.

10. Яковлев В.М., Сенин А.С. Инновационному типу развития российской экономики нет альтернативы // Актуальные вопросы инновационной экономики. М.: Издательский Дом «Наука»; Институт менеджмента и маркетинга РАХН и ГС при Президенте РФ, 2012. № 1(1).

11. Baranenko S.P., Dudin M.N., Ljasnikov N.V., Busygin KD. Using environmental approach to innovation-oriented development of industrial enterprises // American Journal of Applied Sciences.- 2014.- Vol. 11, No.2, - P. 189-194.

12. Dudin M.N. A systematic approach to determining the modes of interaction of large and small businesses // European Journal of Economic Studies. 2012. Vol. (2), № 2, P. 84-87.

13. Dudin M.N., Ljasnikov N.V., Kuznecov A.V., Fedorova I.Ju. Innovative Transformation and Transformational Potential of Socio-Economic Systems // Middle East Journal of Scientific Research, 2013. Vol. 17, № 10. P. 1434-1437.

14. Dudin M.N., Ljasnikov N.V., Pankov S.V., Sepiashvili E.N. Innovative foresight as the method for management of strategic sustainable development of the business structures // World Applied Sciences Journal. - 2013. - Vol. 26, № 8. - P. 1086-1089.

15. Sekerin V. D., Avramenko S. A., Veselovsky M. Ya., Aleksakhina V. G. B2G Market: The Essence and Statistical Analysis // World Applied Sciences Journal 31 (6): 1104-1108, 2014

Построение однопараметрической, стохастической модели производственного процесса

к.э.н. доц. Мордасов Ю.П.

Университет машиностроения, 8-916-853-13-32, mordasov20[email protected] ги

Аннотация. Автором разработана математическая, стохастическая модель выполнения производственного процесса, зависящая от одного параметра. Проведена апробация модели. Для этого создана имитационная модель производственного, машиностроительного процесса с учетом влияния случайных возмущений-сбоев. Сравнение результатов математического и имитационного моделирования подтверждает целесообразность применения математической модели на практике.

Ключевые слова: технологический процесс, математическая, имитационная модель, оперативное управление, апробация, случайные возмущения.

Затраты на оперативное управление можно значительно сократить, разработав методику, позволяющую найти оптимум между затратами на оперативное планирование и потерями, которые получаются в результате рассогласования плановых показателей с показателями реальных производственных процессов. Это значит, найти оптимальную длительность прохождения сигнала в цепи обратной связи. Практически это означает сокращение количества расчётов календарных графиков запуска в производство сборочных единиц и за счёт этого экономию материальных ресурсов.

Ход производственного процесса в машиностроении носит вероятностный характер. Постоянное влияние непрерывно меняющихся факторов не даёт возможности предсказать на некоторую перспективу (месяц, квартал) ход производственного процесса в пространстве и времени. В статистических моделях календарного планирования состояние детали в каждый определённый момент времени должно задаваться в виде соответствующей вероятности (распределения вероятностей) нахождения её на различных рабочих местах. Вместе с тем необходимо обеспечить детерминированность конечного результата деятельности предприятия. Это, в свою очередь, предполагает возможность при помощи детерминированных методов планировать определённые сроки нахождения деталей в производстве. Однако опыт показывает, что различные взаимосвязи и взаимопереходы реальных производственных процессов многообразны и многочисленны. При разработке детерминированных моделей это создаёт значительные трудности.

Попытка учесть все факторы, влияющие на ход производства, делает модель громоздкой, и она перестаёт выполнять функции инструмента планирования, учёта и регулирования.

Более простым методом построения математических моделей сложных реальных процессов, зависящих от большого количества различных факторов, учесть которые трудно или даже невозможно, является построение стохастических моделей. В этом случае при анализе принципов функционирования реальной системы или при наблюдении её отдельных характеристик для некоторых параметров строят функции распределения вероятностей. При наличии высокой статистической устойчивости количественных характеристик процесса и их малой дисперсии результаты, получаемые с помощью построенной модели, хорошо согласуются с показателями функционирования реальной системы.

Основными предпосылками построения статистических моделей экономических процессов являются:

Чрезмерная сложность и связанная с ней экономическая неэффективность соответствующей детермированной модели;

Большие отклонения теоретических показателей, получаемых в результате эксперимента на модели, от показателей реально функционирующих объектов.

Поэтому желательно иметь простой математический аппарат, описывающий влияние стохастических возмущений на глобальные характеристики производственного процесса (товарный выпуск продукции, объём незавершённого производства и т.д.). То есть построить математическую модель производственного процесса, зависящую от небольшого числа параметров и отражающую суммарное влияние множества факторов, имеющих различную природу, на ход производственного процесса. Главная задача, которую должен ставить перед собой исследователь при построении модели, не пассивное наблюдение за параметрами реальной системы, а построение такой модели, которая при любом отклонении под влиянием возмущений выводила бы параметры отображаемых процессов на заданный режим. То есть при действии любого случайного фактора в системе должен устанавливаться процесс, сходящий к плановому решению. В настоящее время в автоматизированных системах управления эта функция в основном возложена на человека, который составляет одно из звеньев цепи обратной связи в управлении производственными процессами.

Обратимся к анализу реального производственного процесса. Обычно длительность планового периода (периодичность выдачи планов цехам) выбирается, исходя из традиционно сложившихся календарных интервалов времени: смена, сутки, пятидневка и т.п. Руководствуются при этом в основном практическими соображениями. Минимальная длительность планового периода определяется оперативными возможностями планируемых органов. Если производственно-диспетчерский отдел предприятия справляется с выдачей скорректированных сменных заданий цехам, то расчёт производится на каждую смену (то есть ежесменно производятся затраты, связанные с расчётом и анализом плановых заданий).

Для определения числовых характеристик распределения вероятностей случайных воз-

Серия «Экономика и управление» мущений построим вероятностную модель реального технологического процесса изготовления одной сборочной единицы. Под технологическим процессом изготовления сборочной единицы здесь и в дальнейшем подразумевается последовательность операций (работ по изготовлению данных детали или узла), документально закреплённая в технологии. Каждая технологическая операция изготовления продукции в соответствии с технологическим маршрутом может быть выполнена только после предшествующей. Следовательно, технологический процесс изготовления сборочной единицы является последовательностью событий-операций. Под влиянием различных стохастических причин длительность выполнения отдельной операции может изменяться. В отдельных случаях операция может не выполниться в течение действия данного сменного задания. Очевидно, что эти события можно разложить на элементарные составляющие: выполнения и невыполнения отдельных операций, которым также можно поставить в соответствие вероятности выполнения и невыполнения.

Для конкретного технологического процесса вероятность выполнения последовательности, состоящей из К операций, можно выразить следующей формулой:

РС5 = к) = (1-рк+1)ПГ=1Р1 , (1)

где: Р1 - вероятность выполнения 1-ой операции, взятой отдельно; г - номер операции по порядку в технологическом процессе.

Этой формулой можно пользоваться для определения стохастических характеристик конкретного планового периода, когда известны номенклатура запускаемой в производство продукции и перечень работ, которые должны быть выполнены в данном плановом периоде, а также их стохастические характеристики, которые определяются опытным путём. На практике перечисленным требованиям удовлетворяют только некоторые виды массового производства, обладающие высокой статистической устойчивостью характеристик.

Вероятность выполнения одной отдельно взятой операции зависит не только от внешних факторов, но также от конкретного характера выполняемой работы и от вида сборочной единицы.

Для определения параметров приведённой формулы даже при относительно небольшом наборе сборочных единиц, при малых изменениях номенклатуры выпускаемой продукции требуется значительный объём экспериментальных данных, что вызывает существенные материальные и организационные затраты и делает данный способ определения вероятности бесперебойного изготовления продукции малоприменимым.

Подвергнем полученную модель исследованию на предмет возможности её упрощения. Исходной величиной анализа является вероятность бессбойного выполнения одной операции технологического процесса изготовления продукции. В реальных производственных условиях вероятности выполнения операций каждого вида различны. Для конкретного технологического процесса эта вероятность зависит:

От вида выполняемой операции;

От конкретной сборочной единицы;

От изготавливаемой параллельно продукции;

От внешних факторов.

Проведём анализ влияния колебаний величины вероятности выполнения одной операции на укрупнённые характеристики производственного процесса изготовления продукции (объём товарного выпуска, объём незавершённого производства и т.п.), определяемые с использованием данной модели. Целью исследования является анализ возможности замены в модели различных вероятностей выполнения одной операции средним значением.

Совместное влияние всех перечисленных факторов учитывается при вычислении средней геометрической вероятности выполнения одной операции усреднённого технологического процесса. Анализ современного производства показывает, что она колеблется незначительно: практически в пределах 0,9 - 1,0.

Наглядной иллюстрацией того, насколько низкой вероятности выполнения одной опе-

рации соответствует значение 0,9, является следующий абстрактный пример. Предположим, что нужно изготовить десять деталей. Технологические процессы изготовления каждой из них содержат по десять операций. Вероятность выполнения каждой операции равна 0,9. Найдём вероятности отставания от графика различного количества технологических процессов.

Случайное событие, заключающееся в том, что конкретный технологический процесс изготовления сборочной единицы отстанет от графика, соответствует недовыполнению в этом процессе хотя бы одной операции. Оно противоположно событию: выполнению всех операций без сбоя. Его вероятность равна 1 - 0,910 = 0,65. Поскольку отставания от графика являются независимыми событиями, для определения вероятности отставания от графика различного количества технологических процессов можно воспользоваться распределением вероятностей Бернулли. Результаты вычислений приведены в таблице 1.

Таблица 1

Расчет вероятностей отставания от графика технологических процессов

к С^о0.35к0.651О-к Сумма

Из таблицы видно, что с вероятностью 0,92 от графика отстанут пять технологических процессов, то есть половина. Математическое ожидание количества отставших от графика технологических процессов будет равняться 6,5. Это значит, что в среднем от графика будут отставать 6,5 сборочных единиц из 10. То есть в среднем будут изготавливаться без сбоев от 3 до 4 детали. Автору неизвестны примеры такого низкого уровня организации труда в реальном производстве. Рассмотренный пример наглядно показывает, что накладываемое ограничение на величину вероятности выполнения без сбоев одной операции не противоречит практике. Всем перечисленным требованиям удовлетворяют производственные процессы механосборочных цехов машиностроительного производства.

Таким образом, для определения стохастических характеристик производственных процессов предлагается построить распределение вероятностей пооперационного выполнения одного технологического процесса, которое выражает вероятность выполнения последовательности технологических операций изготовления сборочной единицы через среднюю геометрическую вероятность выполнения одной операции. Вероятность выполнения К операций в этом случае будет равна произведению вероятностей выполнения каждой операции, умноженному на вероятность невыполнения остальной части технологического процесса, которая совпадает с вероятностью невыполнения (К + Т)-ой операции. Этот факт объясняется тем, что если не выполнится какая-либо операция, то следующие за ней выполниться не могут. Последняя запись отличается от остальных, так как выражает вероятность полного прохождения без сбоев всего технологического процесса. Вероятность выполнения К первых операций технологического процесса однозначно связана с вероятностью невыполнения оставшихся операций. Таким образом, распределение вероятностей имеет следующий вид:

РЙ=0)=р°(1-р),

Р(§=1) = р1(1-р), (2)

Р(^=1) = р1(1-р),

Р(^=и-1) = рп"1(1 - р), Р(£=п) = рп,

где: ^ - случайная величина, количество выполнившихся операций;

р - средняя геометрическая вероятность выполнения одной операции, п - количество операций в технологическом процессе.

Справедливость применения полученного, однопараметрического распределения вероятностей интуитивно видна из следующих рассуждений. Предположим, что мы вычислили среднее геометрическое значение вероятности выполнения одной 1 операции по выборке, состоящей из п элементов, где п достаточно велико.

р = УЩТ7Р7= тл|п]т=1р!), (3)

где: Iу - количество операций, имеющих одинаковую вероятность выполнения; ] - индекс группы операций, имеющих одинаковую вероятность выполнения; т - количество групп, состоящих из операций, имеющих одинаковую вероятность выполнения;

^ = - - относительная частота появления операций с вероятностью выполнения р^.

По закону больших чисел, при неограниченном количестве операций относительная частота появления в последовательности операций с определёнными стохастическими характеристиками стремится по вероятности к вероятности этого события. Откуда следует, что

для двух достаточно больших выборок = , значит:

где: т1, т2 - количество групп в первой и второй выборках, соответственно;

1*, I2 - количество элементов в группе первой и второй выборок, соответственно.

Отсюда видно, что если параметр рассчитан для большого количества испытаний, то он будет близок к параметру Р, рассчитанному по данной достаточно большой выборке.

Следует обратить внимание на различную близость к истинному значению вероятностей выполнения различного количества операций технологического процесса. Во всех элементах распределения, кроме последнего, присутствует множитель (I - Р). Поскольку величина параметра Р находится в промежутке 0,9 - 1,0, множитель (I - Р) колеблется в пределах 0 - 0,1. Этот множитель соответствует множителю (I - р;) в исходной модели. Опыт показывает, что это соответствие для конкретной вероятности может вызвать ошибку до 300%. Однако на практике обычно интересуются не вероятностями выполнения какого-либо количества операций, а вероятностью полного выполнения без сбоев технологического процесса. Эта вероятность не содержит множитель (I - Р), и, следовательно, её отклонение от действительного значения невелико (практически не более 3%). Для экономических задач это довольно высокая точность.

Построенное таким образом распределение вероятностей случайной величины является стохастической динамической моделью процесса изготовления сборочной единицы. Время участвует в ней неявно, как длительность одной операции. Модель позволяет определить вероятность того, что через некоторый промежуток времени (соответствующее количество операций) производственный процесс изготовления сборочной единицы не прервётся. Для механосборочных цехов машиностроительного производства среднее количество операций одного технологического процесса достаточно велико (15 - 80). Если рассматривать это число как базовое и считать, что в среднем при изготовлении одной сборочной единицы используется небольшой набор укрупнённых типов работ (токарные, слесарные, фрезерные и т.п.),

то полученное распределение можно с успехом применять для оценки влияния стохастических возмущений на ход производственного процесса.

Автором проводился имитационный эксперимент, построенный по этому принципу. Для генерации последовательности псевдослучайных величин, равномерно распределённых на отрезке 0,9 - 1,0, применялся датчик псевдослучайных чисел, описанный в работе . Программное обеспечение эксперимента написано на алгоритмическом языке КОБОЛ.

В эксперименте формируются произведения сгенерированных случайных величин, имитирующие реальные вероятности полного выполнения конкретного технологического процесса. Они сравниваются с вероятностью выполнения технологического процесса, полученной при использовании среднего геометрического значения, которое вычислялось для некоторой последовательности случайных чисел того же распределения. Среднее геометрическое значение возводится в степень, равную количеству множителей в произведении. Между двумя этими результатами вычисляется относительная разность в процентах. Эксперимент повторяется для различного количества множителей в произведениях и количества чисел, для которых вычисляется среднее геометрическое значение. Фрагмент результатов эксперимента приведен в таблице 2.

Таблица 2

Результаты имитационного эксперимента:

п - степень среднего геометрического значения; к - степень произведения

п к Произведение Отклонение к Произведение Отклонение к Произведение Отклонение

10 1 0,9680 0% 7 0,7200 3% 13 0,6277 -7%

10 19 0,4620 -1% 25 0,3577 -1% 31 0,2453 2%

10 37 0,2004 6% 43 0,1333 4% 49 0,0888 6%

10 55 0,0598 8% 61 0,0475 5% 67 0,0376 2%

10 73 0,0277 1% 79 0,0196 9% 85 0,0143 2%

10 91 0,0094 9% 97 0,0058 0%

13 7 0,7200 8% 13 0,6277 0% 19 0,4620 0%

13 25 0,3577 5% 31 0,2453 6% 37 0,2004 4%

13 43 0,1333 3% 49 0,0888 8% 55 0,0598 8%

13 61 0,0475 2% 67 0,0376 8% 73 0,0277 2%

13 79 0,0196 1% 85 0,0143 5% 91 0,0094 5%

16 1 0,9680 0% 7 0,7200 9%

16 13 0,6277 2% 19 0,4620 3% 25 0,3577 0%

16 31 0,2453 2% 37 0,2004 2% 43 0,1333 5%

16 49 0,0888 4% 55 0,0598 0% 61 0,0475 7%

16 67 0,0376 5% 73 0,0277 5% 79 0,0196 2%

16 85 0,0143 4% 91 0,0094 0% 97 0,0058 4%

19 4 0,8157 4% 10 0,6591 1% 16 0,5795 -9%

19 22 0,4373 -5% 28 0,2814 5% 34 0,2256 3%

19 40 0,1591 6% 46 0,1118 1% 52 0,0757 3%

19 58 0,0529 4% 64 0,0418 3% 70 0,0330 2%

19 76 0,0241 6% 82 0,0160 1% 88 0,0117 8%

19 94 0,0075 7% 100 0,0048 3%

22 10 0,6591 4% 16 0,5795 -4% 22 0,4373 0%

22 28 0,2814 5% 34 0,2256 5% 40 0,1591 1%

22 46 0,1118 1% 52 0,0757 0% 58 0,0529 8%

22 64 0,0418 1% 70 0,0330 3% 76 0,0241 5%

22 82 0,0160 4% 88 0,0117 2% 94 0,0075 5%

22 100 0,0048 1%

25 4 0,8157 3% 10 0,6591 0%

25 16 0,5795 0% 72 0,4373 -7% 28 0,2814 2%

25 34 0,2256 9% 40 0,1591 1% 46 0,1118 4%

25 52 0,0757 5% 58 0,0529 4% 64 0,0418 2%

25 70 0,0330 0% 76 0,0241 2% 82 0,0160 4%

28 4 0,8157 2% 10 0,6591 -2% 16 0,5795 -5%

28 22 0,4373 -3% 28 0,2814 2% 34 0,2256 -1%

28 40 0,1591 6% 46 0,1118 6% 52 0,0757 1%

28 58 0,0529 4% 64 0,041 8 9% 70 0,0330 5%

28 70 0,0241 2% 82 0,0160 3% 88 0,0117 1%

28 94 0,0075 100 0,0048 5%

31 10 0,6591 -3% 16 0,5795 -5% 22 0,4373 -4%

31 28 0,2814 0% 34 0,2256 -3% 40 0,1591 4%

31 46 0,1118 3% 52 0,0757 7% 58 0,0529 9%

31 64 0,0418 4% 70 0,0330 0% 76 0,0241 6%

31 82 0,0160 6% 88 0,0117 2% 94 0,0075 5%

При постановке данного имитационного эксперимента преследовалась цель исследовать возможность получения при помощи распределения вероятностей (2) одну из укрупнённых статистических характеристик производственного процесса - вероятность выполнения без сбоев одного технологического процесса изготовления сборочной единицы, состоящего из К операций. Для конкретного технологического процесса эта вероятность равна произведению вероятностей выполнения всех его операций. Как показывает имитационный эксперимент, её относительные отклонения от вероятности, полученной с использованием разработанной вероятностной модели, не превышают 9%.

Поскольку в имитационном эксперименте использовано более неудобное, чем реальное, распределение вероятностей, то практические расхождения будут ещё меньше. Отклонения наблюдаются как в сторону уменьшения, так и в сторону превышения значения, полученного исходя из усредненных характеристик. Этот факт наводит на мысль, что если рассматривать отклонение вероятности бессбойного выполнения не отдельного технологического процесса, а нескольких, то оно будет значительно меньше. Очевидно, что оно будет тем меньше, чем больше технологических процессов будут рассматриваться. Таким образом, имитационный эксперимент показывает хорошее согласование вероятности выполнения без сбоев технологического процесса изготовления продукции с вероятностью, получаемой при использовании однопараметрической математической модели.

Кроме того, имитационные эксперименты проводились:

Для исследования статистической сходимости оценки параметра распределения вероятностей;

Для исследования статистической устойчивости математического ожидания числа выполнившихся без сбоев операций;

Для анализа методик определения длительности минимального планового периода и оценки рассогласования плановых и реальных показателей производственного процесса, при несовпадении во времени планового и производственного периодов.

Эксперименты показали хорошее соответствие теоретических данных, получаемых на основе применения методик, и эмпирических данных, получаемых с помощью имитации на

Серия «Экономика и управление»

ЭВМ реальных производственных процессов.

На основе применения построенной математической модели автором разработаны три конкретных методики повышения эффективности оперативного управления. Для их апробации проводились отдельные имитационные эксперименты.

1. Методика определения рационального объёма производственного задания на плановый период.

2. Методика определения наиболее эффективной длительности оперативного планового периода.

3. Оценка рассогласования при несовпадении во времени планового и производственного периодов.

Литература

1. Мордасов Ю.П. Определение длительности минимального оперативного планового периода в условиях действия случайных возмущений / Экономико-математическое и имитационное моделирование с применением ЭВМ. - М: МИУ им. С. Орджоникидзе, 1984.

2. Нейлор Т. Машинные имитационные эксперименты с моделями экономических систем. -М: Мир, 1975.

Переход от концентрации к диверсификации - эффективный путь развития экономики малого и среднего бизнеса

проф. Козленко Н. Н. Университет машиностроения

Аннотация. В данной статье рассмотрена проблема выбора наиболее эффективного развития российских предприятий малого и среднего бизнеса с помощью перехода от стратегии концентрации к стратегии диверсификации. Рассмотрены вопросы целесообразности диверсификации, ее преимущества, критерии выбора пути диверсификации, приведена классификация стратегий диверсификации.

Ключевые слова: предприятия малого и среднего бизнеса; диверсификация; стратегическое соответствие; конкурентные преимущества.

Активное изменение параметров макросреды (изменение конъюнктуры рынка, появление новых конкурентов в смежных отраслях, рост уровня конкуренции вообще) зачастую приводит к невыполнению намеченных стратегических планов предприятий малого и среднего бизнеса, потерям финансово-экономической устойчивости предприятий из-за значительного разрыва между объективными условиями деятельности малых предприятий и уровнем технологии управления ими.

Основными условиями экономической стабильности и возможности сохранения конкурентных преимуществ является способность системы управления своевременно реагировать и изменять внутренние производственные процессы (менять ассортимент с учетом диверсификации, перестраивать производственно-технологические процессы, менять структуру организации, использовать инновационные инструменты маркетинга и менеджмента).

Исследование практики российских предприятий малого и среднего бизнеса производственного типа и сервисного обслуживания позволило выявить следующие особенности и базовые причинно-следственные связи, касающиеся современной тенденции перехода малых предприятий от концентрации к диверсификации.

Большинство компаний малого и среднего бизнеса начинают свою деятельность с небольших предприятий с одним видом бизнеса, обслуживающих местные или региональные рынки. В начале своей деятельности номенклатура продукции такой компании весьма ограничена, капитальная база ее слаба, а конкурентные позиции уязвимы. Обычно в стратегии таких компаний главное внимание уделяется росту объема продаж и доле рынка, а также

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Пример построения стохастической модели процесса

В процессе функционирования банка очень часто возникает необходимость в решении проблемы выбора вектора активов, т.е. инвестиционного портфеля банка, и неопределенные параметры, которые необходимо учитывать в этой задаче, связаны в первую очередь с неопределенностью цен на активы (ценные бумаги, реальные вложения и т.д.). В качестве иллюстрации можно привести пример с формированием портфеля государственных краткосрочных обязательств.

Для задач данного класса принципиальный вопрос - это построение модели стохастического процесса изменения цен, поскольку в распоряжении исследователя операции, естественно, имеется только конечный ряд наблюдений реализаций случайных величин - цен. Далее излагается один из подходов к решению этой проблемы, который развивается в ВЦ РАН в связи с решением задач управления стохастическими марковскими процессами.

Рассматриваются М видов ценных бумаг, i =1,… , M , которые торгуются на специальных биржевых сессиях. Бумаги характеризуются величинами - выраженными в процентах доходностями в течение текущей сессии. Если бумага вида в конце сессии покупается по цене и продается в конце сессии по цене, то.

Доходности - это случайные величины, формирующиеся следующим образом. Предполагается существование базовых доходностей - случайных величин, образующих марковский процесс и определяемых по следующей формуле:

Здесь, - константы, а - стандартные нормально распределенные случайные величины (т.е. с нулевым математическим ожиданием и единичной дисперсией).

где - некоторый масштабный коэффициент равный (), а - случайная величина, имеющая смысл отклонения от базового значения и определяемая аналогично:

где - также, стандартные нормально распределенные случайные величины.

Предполагается, что некоторая оперирующая сторона, называемая в дальнейшем оператором, в течение некоторого времени управляет своим капиталом, вложенным в бумаги (во всякий момент в бумагу ровно одного вида), продавая их в конце текущей сессии и тут же покупая на вырученные деньги другие бумаги. Управление, выбор приобретаемых бумаг, производится по алгоритму, зависящему от информированности оператора о процессе, формирующем доходности бумаг. Нами будут рассматриваться различные гипотезы об этой информированности и, соответственно, различные алгоритмы управления. Будем предполагать, что исследователь операции, разрабатывает и оптимизирует алгоритм управления, используя имеющийся ряд наблюдений за процессом, т.е., используя информацию о ценах закрытия на биржевых сессиях, а также, возможно, и о величинах, на некотором промежутке времени, соответствующем сессиям с номерами. Целью экспериментов является сравнение оценок ожидаемой эффективности различных алгоритмов управления с их теоретическим математическим ожиданием в условиях, когда алгоритмы настраиваются и оцениваются на одном и том же ряду наблюдений. Для оценки теоретического математического ожидания используется метод Монте-Карло «прогонкой» управления по достаточно объемному сгенерированному ряду, т.е. по матрице размерности, где столбцы соответствуют реализациям значений и по сессиям, а число определяется вычислительными возможностями, но при условии, чтобы элементов матрицы было не менее 10000. Необходимо, чтобы «полигон» был одним и тем же во всех проводимых экспериментах. Имеющийся ряд наблюдений имитирует сгенерированная матрица размерности, где значения в ячейках имеют тот же смысл, что и выше. Число и значения в этой матрице будут в дальнейшем варьироваться. Матрицы обоих видов формируются посредством процедуры генерации случайных чисел, имитирующей реализацию случайных величин, и расчета по этим реализациям и формулам (1) - (3) искомых элементов матриц.

Оценка эффективности управления на ряду наблюдений производится по формуле

где - индекс последней сессии в ряду наблюдений, а - номер облигаций, выбранных алгоритмом на шаге, т.е. того вида облигаций, в которых, согласно алгоритму, будет находиться капитал оператора в течение сессии. Кроме того, будем рассчитывать также месячную эффективность. Число 22 приблизительно соответствует числу торговых сессий за месяц.

Вычислительные эксперименты и анализ результатов

Гипотезы

Точное знание оператором будущих доходностей.

Индекс выбирается как. Этот вариант дает верхнюю оценку для всех возможных алгоритмов управления, даже в случае, если дополнительная информация (учет каких-то дополнительных факторов) позволит уточнить модель прогноза цен.

Случайное управление.

Оператор не знает закона ценообразования и проводит операции случайным выбором. Теоретически, в данной модели математическое ожидание результата операций совпадает с тем, как если бы оператор вкладывал капитал не в одну бумагу, а во все поровну. При нулевых математических ожиданиях величин математическое ожидание величины равно 1. Расчеты по данной гипотезе полезны только в том смысле, что позволяют в некоторой степени проконтролировать корректность написанных программ и сгенерированной матрицы значений.

Управление при точном знании модели доходностей, всех ее параметров и наблюдаемой величины .

В этом случае оператор в конце сессии, зная значения и для сессий, и, а в наших расчетах, используя строки, и, матрицы, вычисляет по формулам (1) - (3) математические ожидания величин и выбирает для покупки бумагу с наибольшей из этих значений величин.

где, согласно (2), . (6)

Управление при знании структуры модели доходностей и наблюдаемой величине , но неизвестных коэффициентах .

Будем предполагать, что исследователь операции не только не знает значения коэффициентов, но не знает и число влияющих на формирование величин, предшествующих значений этих параметров (глубину памяти марковских процессов). Не знает также, одинаковы или различны коэффициенты при разных значениях. Рассмотрим различные варианты действий исследователя - 4.1, 4.2, и 4.3, где второй индекс обозначает предположение исследователя о глубине памяти процессов (одинаковой для и). К примеру, в случае 4.3 исследователь предполагает, что формируется согласно уравнению

Здесь, для полноты описания, добавлен свободный член. Однако, этот член может быть исключен либо из содержательных соображений, либо статистическими методами. Поэтому для упрощения расчетов мы в дальнейшем свободные члены при настройке параметров из рассмотрения исключаем и формула (7) приобретает вид:

В зависимости от того, предполагает ли исследователь одинаковыми или различными коэффициенты при разных значениях, будем рассматривать подслучаи 4.m. 1 - 4.m. 2, m = 1 - 3. В случаях 4.m. 1 коэффициенты будут настраиваться по наблюденным значениям для всех бумаг вместе. В случаях 4.m. 2 коэффициенты настраиваются для каждой бумаги отдельно, при этом исследователь работает в рамках гипотезы, что коэффициенты, различны при разных и, к примеру, в случае 4.2.2. значения определяются модифицированной формулой (3)

Первый способ настройки - классический метод наименьших квадратов. Рассмотрим его на примере настройки коэффициентов при в вариантах 4.3.

Согласно формуле (8),

Требуется найти такие значения коэффициентов, чтобы минимизировать выборочную дисперсию для реализаций на известном ряду наблюдений, массиве при условии, что математическое ожидание значений определяется формулой (9).

Здесь и в дальнейшем знак «» указывает на реализацию случайной величины.

Минимум квадратичной формы (10) достигается в единственной точке, в которой все частные производные равны нулю. Отсюда получаем систему трех алгебраических линейных уравнений:

решение которой дает искомые значения коэффициентов.

После того как коэффициенты верифицированы, выбор управлений проводится так же, как и в случае 3.

Замечание. Для того, чтобы облегчить работу над программами, принято процедуру выбора управления, описанную для гипотезы 3, сразу писать, ориентируясь не на формулу (5), а на ее модифицированный вариант в виде

При этом в расчетах для случаев 4.1.m и 4.2.m, m = 1, 2, лишние коэффициенты обнуляются.

Второй способ настройки состоит в выборе значений параметров так, чтобы максимизировать оценку из формулы (4). Задача эта аналитически и вычислительно безнадежно сложна. Поэтому здесь можно говорить только о приемах некоторого улучшения значения критерия относительно исходной точки. За исходную точку можно взять значения, полученные методом наименьших квадратов, и затем произвести обсчет вокруг этих значений по сетке. При этом последовательность действий такова. Сначала обсчитывается сетка на параметрах (квадрат или куб) при фиксированных остальных параметрах. Затем для случаев 4.m. 1 обсчитывается сетка на параметрах, а для случаев 4.m. 2 на параметрах при фиксированных остальных параметрах. В случае 4.m. 2 далее так же оптимизируются параметры. Когда этим процессом исчерпываются все параметры, процесс повторяется. Повторения производятся до тех пор, пока новый цикл дает улучшение значений критерия по сравнению с предыдущим. Чтобы число итераций не оказалось слишком большим, применим следующий прием. Внутри каждого блока расчетов на 2-х или 3-х-мерном пространстве параметров сначала берется достаточно грубая сетка, затем, если лучшая точка оказывается на краю сетки, то исследуемый квадрат (куб) сдвигается и расчет повторяется, если же лучшая точка внутренняя, то строится новая сетка вокруг этой точки с меньшим шагом, но с тем же общим числом точек, и так некоторое, но разумное число раз.

Управление при ненаблюдаемом и без учета зависимости между доходностями разных бумаг.

Имеется в виду, что исследователь операции не замечает зависимости между разными бумаги, ничего не знает о существовании и пытается прогнозировать поведение каждой бумаги по отдельности. Рассмотрим, как обычно, три случая, когда исследователь моделирует процесс формирования доходностей в виде марковского процесса глубиной 1, 2, и 3:

Коэффициенты для прогноза ожидаемой доходности не важны, а коэффициенты настраиваются двумя способами, описанными в п. 4. Управления выбираются, аналогично тому, как это делалось выше.

Замечание: Так же, как и для выбора управления, для метода наименьших квадратов имеет смысл написать единую процедуру с максимальным числом переменных - 3. Если настраиваемые переменные, скажем, то для из решения линейной системы выписывается формула, в которую входят только константы, определяется через, а через и. В случаях, когда переменных меньше чем три, значения лишних переменных обнуляются.

Хотя расчеты в различных вариантах проводятся сходным образом, число вариантов довольно велико. Когда подготовка инструментов для расчетов во всех перечисленных вариантах оказывается затруднительным, рассматривается на экспертном уровне вопрос о сокращении их числа.

Управление при ненаблюдаемом с учетом зависимости между доходностями разных бумаг.

Это серия экспериментов имитирует те манипуляции, которые были произведены в задаче с ГКО . Мы предполагаем, что исследователь практически ничего не знает о механизме формирования доходностей. Он располагает только рядом наблюдений, матрицей. Из содержательных соображений он делает предположение о взаимозависимости текущих доходностей разных бумаг, группирующихся около некоторой базовой доходности, определяемой состоянием рынка в целом. Рассматривая графики доходностей бумаг от сессии к сессии, он делает предположение, что в каждый момент времени точки, координатами которых являются номера бумаг и доходности (в реальности это были сроки до погашения бумаг и их цены), группируются возле некоторой кривой (в случае с ГКО - параболы).

Здесь - точка пересечения теоретической прямой с осью ординат (базовая доходность), а - ее наклон (то, что должно быть равным 0.05).

Построив таким образом теоретические прямые, исследователь операции может рассчитать значения - отклонения величин от их теоретических значений.

(Заметим, что здесь имеют несколько иной смысл, чем в формуле (2). Отсутствует размерный коэффициент, и рассматриваются отклонения не от базового значения, а от теоретической прямой.)

Следующей задачей является прогноз значений по известным в момент значениям, . Поскольку

для прогноза значений исследователю требуется ввести гипотезу о формировании величин, и. По матрице исследователь может установить значительную корреляцию между величинами и. Можно принять гипотезу о линейной зависимости между величинами от: . Из содержательных соображений коэффициент сразу полагается равным нулю, и методом наименьших квадратов ищется в виде:

Далее, как и выше и моделируются посредством марковского процесса и описываются формулами, аналогичными (1) и (3) с разным числом переменных в зависимости от глубины памяти марковского процесса в рассматриваемом варианте. (здесь определяется не по формуле (2), а по формуле (16))

Наконец, как и выше реализуются два способа настройки параметров методом наименьших квадратов, и посредством непосредственной максимизации критерия и делаются оценки.

Эксперименты

Для всех описанных вариантов рассчитывались оценки критериев, при разных матрицах. (матрицы с числом строк 1003, 503, 103 и для каждого варианта размерности реализовывались порядка ста матриц). По результатам расчетов для каждой размерности оценивались математическое ожидание и дисперсия величин, и их отклонение от величин, для каждого из подготовленных вариантов.

Как показали первые серии вычислительных экспериментов при малом числе настраиваемых параметров (порядка 4), выбор метода настройки не оказывает существенного влияния на значение критерия в задаче.

2. Классификация средств моделирования

стохастический моделирование банк алгоритм

Классификация методов моделирования и моделей может проводиться по степени подробности моделей, по характеру признаков, по сфере приложения и т.д.

Рассмотрим одну из распространенных классификаций моделей по средствам моделирования, именно этот аспект является наиболее важным при анализе различных явлений и систем.

материальным в том случае, когда исследование ведется на моделях, связь которых с исследуемым объектом существует объективно, имеет материальный характер. Модели в этом случае строятся исследователем либо выбирается им из окружающего мира.

По средствам моделирования методы моделирования делятся на две группы: методы материального и методы идеального моделирования Моделирование называется материальным в том случае, когда исследование ведется на моделях, связь которых с исследуемым объектом существует объективно, имеет материальный характер. Модели в этом случае строятся исследователем либо выбирается им из окружающего мира. В свою очередь в материальном моделировании можно выделить: пространственное, физическое и аналоговое моделирование.

В пространственном моделировании используются модели, предназначенные для того, чтобы воспроизвести или отобразить пространственные свойства изучаемого объекта. Модели в этом случае геометрически подобны объектам исследования (любые макеты).

Модели, используемые в физическом моделировании предназначены для воспроизводства динамики процессов, происходящих в изучаемом объекте. Причем общность процессов в объекте исследования и модели основана на сходстве их физической природы. Этот метод моделирования широко распространен в технике при проектировании технических систем различного вида. Например, исследование летательных аппаратов на основе экспериментов в аэродинамической трубе.

Аналоговое моделирование связано с использованием материальных моделей, имеющих другую физическую природу, но описывающихся теми же математическими соотношениями, что и изучаемый объект. Оно основано на аналогии в математическом описании модели и объекта (изучение механических колебаний с помощью электрической системы, описываемой теми же дифференциальными уравнениями, но более удобной в проведении экспериментов).

Во всех случаях материального моделирования модель-это материальное отражение исходного объекта, а исследование состоит в материальном воздействии на модель, то есть в эксперименте с моделью. Материальное моделирование по своей природе является экспериментальным методом и в экономических исследованиях не используется.

От материального моделирования принципиально отличается идеальное моделирование , основанное на идеальной, мыслимой связи между объектом и моделью. Методы идеального моделирования широко используются в экономических исследованиях. Их условно можно разделить на две группы: формализованное и неформализованное.

В формализованном моделировании моделью служат системы знаков или образов, вместе с которыми задаются правила их преобразования и интерпретации. Если в качестве моделей используются системы знаков, то моделирование называется знаковым (чертежи, графики, схемы, формулы).

Важным видом знаковой моделирования является математическое моделирование , основанное на том факте, что различные изучаемые объекты и явления могут иметь одинаковое математическое описание в виде совокупности формул, уравнений, преобразование которых осуществляется на основе правил логики и математики.

Другой формой формализованного моделирования является образное, в котором модели строятся на наглядных элементах (упругие шары, потоки жидкости, траектории движения тел). Анализ образных моделей осуществляется мысленно, поэтому они могут быть отнесены к формализованному моделированию, когда правила взаимодействия объектов, используемых в модели четко фиксированы (например, в идеальном газе столкновение двух молекул рассматривается, как соударение шаров, причем результат соударения мыслится всеми одинаково). Модели такого типа широко используются в физике, их принято называть «мысленными экспериментами».

Неформализованное моделирование. К нему можно отнести такой анализ проблем разнообразного типа, когда модель не формируется, а вместо нее используется некоторое точно не зафиксированное мысленное отображение реальной действительности, служащее основой для рассуждения и принятия решения. Таким образом, всякое рассуждение не использующее формальную модель можно считать неформализованным моделированием, когда у мыслящего индивидуума имеется некоторый образ объекта исследования, который можно интерпретировать как неформализованную модель реальности.

Исследование экономических объектов в течение долгого времени проводилось только на основе таких неопределенных представлений. В настоящее время анализ неформализованных моделей остается наиболее распространенным средством экономического моделирования, а именно всякий человек, принимающий экономическое решение без использования математических моделей вынужден руководствоваться тем или иным описанием ситуации, основанной на опыте и интуиции.

Основным недостатком этого подхода является то, что решения может оказаться мало эффективным или ошибочным. Еще долгое время, по-видимому, эти методы останутся основным средством принятия решений не только в большинстве обыденных ситуаций, но и при принятий решений в экономике.

Размещено на Allbest.ru

...

Подобные документы

    Принципы и этапы построения модели авторегрессии, ее основные достоинства. Спектр процесса авторегрессии, формула для ее нахождения. Параметры, характеризующие спектральную оценку случайного процесса. Характеристическое уравнение модели авторегрессии.

    контрольная работа , добавлен 10.11.2010

    Понятие и типы моделей. Этапы построения математической модели. Основы математического моделирования взаимосвязи экономических переменных. Определение параметров линейного однофакторного уравнения регрессии. Оптимизационные методы математики в экономике.

    реферат , добавлен 11.02.2011

    Исследование особенностей разработки и построения модели социально-экономической системы. Характеристика основных этапов процесса имитации. Экспериментирование с использованием имитационной модели. Организационные аспекты имитационного моделирования.

    реферат , добавлен 15.06.2015

    Понятие имитационного моделирования, применение его в экономике. Этапы процесса построения математической модели сложной системы, критерии ее адекватности. Дискретно-событийное моделирование. Метод Монте-Карло - разновидность имитационного моделирования.

    контрольная работа , добавлен 23.12.2013

    Методологические основы эконометрики. Проблемы построения эконометрических моделей. Цели эконометрического исследования. Основные этапы эконометрического моделирования. Эконометрические модели парной линейной регрессии и методы оценки их параметров.

    контрольная работа , добавлен 17.10.2014

    Этапы построения деревьев решений: правило разбиения, остановки и отсечения. Постановка задачи многошагового стохастического выбора в предметной области. Оценка вероятности реализации успешной и неуспешной деятельности в задаче, ее оптимальный путь.

    реферат , добавлен 23.05.2015

    Определение, цели и задачи эконометрики. Этапы построения модели. Типы данных при моделировании экономических процессов. Примеры, формы и моделей. Эндогенные и экзогенные переменные. Построение спецификации неоклассической производственной функции.

    презентация , добавлен 18.03.2014

    Основной тезис формализации. Моделирование динамических процессов и имитационное моделирование сложных биологических, технических, социальных систем. Анализ моделирования объекта и выделение всех его известных свойств. Выбор формы представления модели.

    реферат , добавлен 09.09.2010

    Основные этапы математического моделирования, классификация моделей. Моделирование экономических процессов, основные этапы их исследования. Системные предпосылки формирования модели системы управления маркетинговой деятельностью предприятия сферы услуг.

    реферат , добавлен 21.06.2010

    Общая схема процесса проектирования. Формализация построения математической модели при проведении оптимизации. Примеры использования методов одномерного поиска. Методы многомерной оптимизации нулевого порядка. Генетические и естественные алгоритмы.