Что такое ряды фурье. На каждый день. Разложение непериодических функций в ряд Фурье

2. Определение коэффициентов ряда по формулам Фурье.

Пусть периодическая функция ƒ(х) с периодом 2π такая, что она представляется тригонометрическим рядом, сходящимся к данной функции в интервале (-π, π), т. е. является суммой этого ряда:

Предположим, что интеграл от функции, стоящей в левой части этого равенства, равняется сумме интегралов от членов этого ряда. Это будет выполняться, если предположить, что числовой ряд, составленный из коэффициентов данного тригонометрического ряда, абсолютно сходится, т. е.. сходится положительный числовой ряд

Ряд (1) мажорируем и его можно почленно интегрировать в промежутке (-π, π). Проинтегрируем обе части равенства (2):

Вычислим отдельно каждый интеграл, встречающийся в правой части:

,

,

Таким образом, , откуда

. (4)

Оценка коэффициентов Фурье. (Бугров)

Теорема 1. Пусть функция ƒ(x) периода 2π имеет непрерывную производную ƒ (s) (x) порядка s, удовлетворяющей на всей действительной оси неравенству:

│ ƒ (s) (x)│≤ M s ; (5)

тогда коэффициенты Фурье функции ƒ удовлетворяют неравенству

Доказательство. Интегрируя по частям и учитывая, что

ƒ(-π) = ƒ(π), имеем

Интегрируя правую часть (7) последовательно, учитывая, что производные ƒ ΄ , …, ƒ (s-1) непрерывны и принимают одинаковые значения в точках t = -π и t = π, а также оценку (5), получим первую оценку (6).

Вторая оценка (6) получается подобным образом.

Теорема 2. Для коэффициентов Фурье ƒ(x) имеет место неравенство

(8)

Доказательство. Имеем

(9)

Вводя в данном случае замену переменной и учитывая, что ƒ(x) – периодическая функция, получим

Складывая (9) и (10), получаем

Аналогичным образом проводим доказательство для b k .

Следствие. Если функция ƒ(x) непрерывна, то её коэффициенты Фурье стремятся к нулю: a k → 0, b k → 0, k → ∞.

Пространство функций со скалярным произведением.

Функция ƒ(x) называется кусочно-непрерывной на отрезке , если она непрерывна на этом отрезке, за исключением, может быть, конечного числа точек, где она имеет разрывы первого рода. Такие точки можно складывать и умножать на действительные числа и получать как результат снова кусочно-непрерывные на отрезке функции.

Скалярным произведением двух кусочно-непрерывных на (a < b) функций ƒ и φ будем называть интеграл

(11)

Очевидно для любых кусочно-непрерывных на функций ƒ , φ , ψ выполняются свойства:

1) (ƒ , φ) =(φ, ƒ);

2) (ƒ , ƒ) и из равенства (ƒ , ƒ) = 0 следует, что ƒ(x) =0 на , исключая, быть может, конечное число точек x;

3) (α ƒ + β φ , ψ) = α (ƒ , ψ) + β (φ , ψ),

где α, β – произвольные действительные числа.

Множество всех кусочно-непрерывных функций, определенных на отрезке , для которых введено скалярное произведение по формуле (11), мы будем обозначать, и называть пространством

Замечание 1.

В математике называют пространством = (a, b) совокупность функций ƒ(x), интегрируемых в лебеговом смысле на вместе со своими квадратами, для которых введено скалярное произведение по формуле (11). Рассматриваемое пространство есть часть . Пространство обладает многими свойствами пространства , но не всеми.

Из свойств 1), 2), 3) следует важное неравенство Буняковского | (ƒ , φ) | ≤ (ƒ , ƒ) ½ (φ , φ) ½ , которое на языке интегралов выглядит так:

Величина

называется нормой функции f.

Норма обладает следующими свойствами:

1) || f || ≥ 0, при этом равенство может быть только для нулевой функции f = 0, т. е. функции, равной нулю, за исключением, быть может, конечного числа точек;

2) || ƒ + φ || ≤ || ƒ(x) || || φ ||;

3) || α ƒ || = | α | · || ƒ ||,

где α – действительное число.

Второе свойство на языке интегралов выглядит так:

и называется неравенством Минковского.

Говорят, что последовательность функций { f n }, принадлежит к ,сходится к функции принадлежит в смысле среднего квадратического на (или ещё по норме ), если

Отметим, что если последовательность функций ƒ n (x) сходится равномерно к функции ƒ(x) на отрезке , то для достаточно больших n разность ƒ(x) - ƒ n (x) по абсолютной величине должна быть мала для всех х из отрезка .

В случае же, если ƒ n (x) стремится к ƒ(x)в смысле среднего квадратического на отрезке , то указанная разность может и не быть малой для больших n всюду на . В отдельных местах отрезка эта разность может быть и велика, но важно только, чтобы интеграл от её квадрата по отрезку был мал для больших n.

Пример. Пусть на заданна изображенная на рисунке непрерывная кусочно-линейная функция ƒ n (x) (n = 1, 2,…), причем

(Бугров, стр. 281, рис. 120)

При любом натуральном n

и, следовательно, эта последовательность функций, хотя и сходится к нулю при n → ∞, но неравномерно. Между тем

т. е. последовательность функций {f n (х)} стремится к нулю в смысле среднего квадратического на .

Из элементов некоторой последовательности функций ƒ 1 , ƒ 2 , ƒ 3 ,… (принадлежащих ) построим ряд

ƒ 1 + ƒ 2 + ƒ 3 +… (12)

Сумма первых его n членов

σ n = ƒ 1 + ƒ 2 + … + ƒ n

есть функция, принадлежащая к . Если случится, что в существует функция ƒ такая, что

|| ƒ- σ n || → 0 (n → ∞),

то говорят, что ряд (12) сходится к функции ƒ в смысле среднего квадратического и пишут

ƒ = ƒ 1 + ƒ 2 + ƒ 3 +…

Замечание 2.

Можно рассматривать пространство = (a, b) комплекснозначных функций ƒ(x) = ƒ 1 (x) + iƒ 2 (x), где ƒ 1 (x) и ƒ 2 (x) – действительные кусочно – непрерывные на функции. В этом пространстве функции умножаются на комплексные числа и скалярное произведение функций ƒ(x) = ƒ 1 (x) + iƒ 2 (x) и φ(х) = φ 1 (х) +i φ 2 (х) определяется следующим образом:

а норма ƒ определяется как величина

Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем


Разложение в ряд Фурье четных и нечетных функций Функция f(x), определенная на отрезке \-1, где I > 0, называется четной, если График четной функции симметричен относительно оси ординат. Функция f(x), определенная на отрезке J), где I > 0, называется нечетной, если График нечетной функции симметричен относительно начала координат. Пример. а) Функция является четной на отрезке |-jt, jt), так как для всех х е б) Функция является нечетной, так как Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем в) Функция f(x)=x2-x, где не принадлежит ни к четным, ни к нечетным функциям, так как Пусть функция f(x), удовлетворяющая условиям теоремы 1, является четной на отрезке х|. Тогда для всех т.е. /(ж) cos nx является четной функцией, a f(x)sinnx - нечетной. Поэтому коэффициенты Фурье четной функции /(ж) будут равны Следовательно, ряд Фурье четной функции имеет вид 00 Если f(x) - нечетная функция на отрезке [-тг, ir|, то произведение f(x)cosnx будет нечетной функцией, а произведение f(x) sin пх - четной функцией. Поэтому будем иметь Таким образом, ряд Фурье нечетной функции имеет вид Пример 1. Разложить в ряд Фурье на отрезке -х ^ х ^ п функцию 4 Так как эта функция четная и удовлетворяет условиям теоремы 1, то ее ряд Фурье имеет вид Находим коэффициенты Фурье. Имеем Применяя дважды интегрирование по частям, получим, что Значит, ряд Фурье данной функции выглядит так: или, в развернутом виде, Это равенство справедливо для любого х € , так как в точках х = ±ir сумма ряда совпадает со значениями функции f(x) = х2, поскольку Графики функции f(x) = х и суммы полученного ряда даны на рис. Замечание. Этот ряд Фурье позволяет найти сумму одного из сходящихся числовых рядов, а именно, при х = 0 получаем, что Пример 2. Разложить в ряд Фурье на интервале функцию /(х) = х. Функция /(х) удовлетворяет условиям теоремы 1, следовательно ее можно разложить в ряд Фурье, который в силу нечетности этой функции будет иметь вид Интегрируя по частям, находим коэффициенты Фурье Следовательно, ряд Фурье данной функции имеет вид Это равенство имеет место для всех х В точках х - ±тг сумма ряда Фурье не совпадает со значениями функции /(х) = х, так как она равна Вне отрезка [-*, я-] сумма ряда является периодическим продолжением функции /(х) = х; ее график изображен на рис. 6. § 6. Разложение функции, заданной на отрезке, в ряд по синусам или по косинусам Пусть ограниченная кусочно-монотонная функция / задана на отрезке . Значения этой функции на отрезке 0| можно доопределить различным образом. Например, можно определить функцию / на отрезке тс] так, чтобы /. В этом случае говорят, что) «продолжена на отрезок 0] четным образом»; ее ряд Фурье будет содержать только косинусы. Если же функцию /(ж) определить на отрезке [-л-, тс] так, чтобы /(, то получится нечетная функция, и тогда говорят, что / «продолжена на отрезок [-*, 0] нечетным образом»; в этом случае се ряд Фурье будет содержать только синусы. Итак, каждую ограниченную кусочно-монотонную функцию /(ж), определенную на отрезке , можно разложить в ряд Фурье и по синусам, и по косинусам. Пример 1. Функцию разложить в ряд Фурье: а) по косинусам; б) по синусам. М Данная функция при ее четном и нечетном продолжениях в отрезок |-х,0) будет ограниченной и кусочно-монотонной. а) Продолжим /(z) в отрезок 0) а) Продолжим j\x) в отрезок (-тг,0| четным образом (рис. 7), тогда ее ряд Фурье i будет иметь вид П=1 где коэффициенты Фурье равны соответственно для Следовательно, б) Продолжим /(z) в отрезок [-x,0] нечетным образом (рис. 8). Тогда ее ряд Фурье §7. Ряд Фурье для функции с произвольным периодом Пусть функция fix) является периодической с периодом 21,1 ^ 0. Для разложения ее в ряд Фурье на отрезке где I > 0, сделаем замену переменной, положив х = jt. Тогда функция F(t) = / ^tj будет периодической функцией аргумента t с периодом и ее можно разложить на отрезке в ряд Фурье Возвращаясь к переменной ж, т. е. положив, получим Все теоремы, справедливые для рядов Фурье периодических функций с периодом 2тг, остаются в силе и для периодических функций с произвольным периодом 21. В частности, сохраняет свою силу и достаточный признак разложимости функции в ряд Фурье. Пример 1. Разложить в ряд Фурье периодическую функцию с периодом 21, заданную на отрезке [-/,/] формулой (рис.9). Так как данная функция четная, то ее ряд Фурье имеет вид Подставляя в ряд Фурье найденные значения коэффициентов Фурье, получим Отметим одно важное свойство периодических функций. Теорема 5. Если функция имеет период Т и интегрируема, то для любого числа а выполняется равенство m. е. интеграл no отрезку, длина которого равна периоду Т, имеет одно и то же значение независимо от положения этого отрезка на числовой оси. В самом деле, Делаем замену переменной во втором интеграле, полагая. Это дает и следовательно, Геометрически это свойство означает, что в случае площади заштрихованных на рис. 10 областей равны между собой. В частности, для функции f(x) с периодом получим при Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем Пример 2. Функция x является периодической с периодом В силу нечетности данной функции без вычисления интегралов можно утверждать, что при любом Доказанное свойство, в частности, показывает, что коэффициенты Фурье периодической функции f(x) с периодом 21 можно вычислять по формулам где а - произвольное действительное число (отметим, что функции cos - и sin имеют период 2/). Пример 3. Разложить в ряд Фурье заданную на интервале функцию с периодом 2х (рис. 11). 4 Найдем коэффициенты Фурье данной функции. Положив в формулах найдем, что для Следовательно, ряд Фурье будет выглядеть так: В точке х = jt (точка разрыва первого рода) имеем §8. Комплексная запись ряда Фурье В этом параграфе используются некоторые элементы комплексного анализа (см. главу XXX, где все, производимые здесь действия с комплексными выражениями, строго обоснованы). Пусть функция f(x) удовлетворяет достаточным условиям разложимости в ряд Фурье. Тогда на отрезке ж] ее можно представить рядом вида Используя формулы Эйлера Подставляя эти выражения в ряд (1) вместо cos пх и sin пху будем иметь Введем следующие обозначения Тогда ряд (2) примет вид Таким образом, ряд Фурье (1) представлен в комплексной форме (3). Найдем выражения коэффициентов через интегралы. Имеем Аналогично находим Окончательно формулы для с„, с_п и со можно записать так: . . Коэффициенты с„ называются комплексными коэффициентами Фурье функции Для периодической функции с периодом) комплексная форма ряда Фурье примет вид где коэффициенты Сп вычисляются по формулам Сходимость рядов (3) и (4) понимается так: ряды (3) и (4) называются сходящимися для данного значения ж, если существуют пределы Пример. Разложить в комплексный ряд Фурье функцию периода Данная функция удовлетворяет достаточным условиям разложимости в ряд Фурье. Пусть Найдем комплексные коэффициенты Фурье этой функции. Имеем для нечетных для четных n, или,короче. Подставляя значения), окончательно получим Заметим, что этот ряд можно записать и так: Ряды Фурье по общим ортогональным системам функций 9.1. Ортогональные системы функций Обозначим через множество всех (действительных) функций, определенных и интегрируемых на отрезке [а, 6] с квадратом, т. е. таких, для которых существует интеграл В частности, все функции f(x), непрерывные на отрезке [а, 6], принадлежат 6], и значения их интегралов Лебега совпадают со значениями интегралов Римана. Определение. Система функций, где, называется ортогональной на отрезке [а, Ь\, если Условие (1) предполагает, в частности, что ни одна из функций не равна тождественно нулю. Интеграл понимается в смысле Лебега. и назовем величину нормой функции Если в ортогональной системе для всякого п имеем, то система функций называется ортонормированной. Если система {у>„(ж)} ортогональна, то система Пример 1. Тригонометрическая система ортогональна на отрезке. Система функций является ортонормированной системой функций на, Пример 2. Косинус-система и синус-система ортонормирована. Введем обозначение являются ортогональными на отрезке (0, f|, но не ортонормированными (при I Ф- 2). так как их нормы COS Пример 3. Многочлены, определяемые равенством, называются многочленами (полиномами) Лежандра. При п = 0 имеем Можно доказать, что функции образуют ортонормированную систему функций на отрезке. Покажем, например, ортогональность полиномов Лежандра. Пусть т > п. В этом случае, интегрируя п раз по частям, находим поскольку для функции t/m = (z2 - I)m все производные до порядка m - I включительно обращаются в нуль на концах отрезка [-1,1). Определение. Система функций {pn(x)} называется ортогональной на интервале (а, Ь) свесом р(х), если: 1) для всех п = 1,2,... существуют интегралы Здесь предполагается, что весовая функция р(х) определена и положительна всюду на интервале (а, Ь) за возможным исключением конечного числа точек, где р(х) может обращаться в нуль. Выполнив дифференцирование в формуле (3), находим. Можно показать, что многочлены Чебышева-Эрмита ортогональны на интервале Пример 4. Система функций Бесселя {jL(pix)^ ортогональна на интервале нули функции Бесселя Пример 5. Рассмотрим многочлены Чебышева-Эрмита, которые могут быть определены при помощи равенства. Ряд Фурье по ортогональной системе Пусть ортогональная система функций в интервале (a, 6) и пусть ряд (cj = const) сходится на этом интервале к функции f(x): Умножая обе части последнего равенства на - фиксировано) и интегрируя по ж от а до 6, в силу ортогональности системы получим, что Эта операция имеет, вообще говоря, чисто формальный характер. Тем не менее, в некоторых случаях, например, когда ряд (4) сходится равномерно, все функции непрерывны и интервал (a, 6) конечен, эта операция законна. Но для нас сейчас важна именно формальная трактовка. Итак, пусть задана функция. Образуем числа с* по формуле (5) и напишем Ряд, стоящий в правой части, называется рядом Фурье функции f(x) относительно системы {^п(я)}- Числа Сп называются коэффициентами Фурье функции f(x) по этой системе. Знак ~ в формуле (6) означает лишь, что числа Сп связаны с функцией /(ж) формулой (5) (при этом не предполагается, что ряд справа вообще сходится, а тем более сходится к функции f(x)). Поэтому естественно возникает вопрос: каковы свойства этого ряда? В каком смысле он «представляет» функцию f(x)? 9.3. Сходимость в среднем Определение. Последовательность, сходится к элементу ] в среднем, если норма в пространстве Теорема 6. Если последовательность } сходится равномерно, то она сходится и в среднем. М Пусть последовательность {)} сходится равномерно на отрезке [а, Ь] к функции /(х). Это означает, что для всякого при всех достаточно больших п имеем Следовательно, откуда вытекает наше утверждение. Обратное утверждение неверно: последовательность {} может сходиться в среднем к /(х), но не быть равномерно сходящейся. Пример. Рассмотрим последовательность пх Легко видеть, что Но эта сходимость не равномерна: существует е, например, такое, что сколь бы большим ни было л, на отрезке , Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем и пусть Обозначим через с* коэффициенты Фурье функции /(х) по ортонормированной системе ь Рассмотрим линейную комбинацию где n ^ 1 - фиксированное целое число, и найдем значения постоянных, при которых интеграл принимает минимальное значение. Запишем его подробнее Интефируя почленно, в силу ортонормированности системы получим Первые два слагаемых в правой части равенства (7) не зависят, а третье слагаемое неотрицательно. Поэтому интеграл (*) принимает минимальное значение при ак = ск Интеграл называют средним квадратичным приближением функции /(х) линейной комбинацией Тп(х). Таким образом, среднее квадратичное приближение функции/\ принимает минимальное значение, когда. когда Тп(х) есть 71-я частичная сумма ряда Фурье функции /(х) по системе {. Полагая ак = ск, из (7) получаем Равенство (9) называется тождеством Бесселя. Так как его левая часть неотрицательна, то из него следует неравенство Бесселя Поскольку я здесь произвольно, то неравенство Бесселя можно представить в усиленной форме т. е. для всякой функции / ряд из квадратов коэффициентов Фурье этой функции по ортонормированной системе } сходится. Так как система ортонормирована на отрезке [-х, тг], то неравенство (10) в переводе на привычную запись тригонометрического ряда Фурье дает соотношение do справедливое для любой функции /(х) с интегрируемым квадратом. Если f2(x) интегрируема, то в силу необходимого условия сходимости ряда в левой части неравенства (11) получаем, что. Равенство Парсе валя Для некоторых систем {^„(х)} знак неравенства в формуле (10) может быть заменен (для всех функций /(х) 6 Ч) знаком равенства. Получаемое равенство называется равенством Парсеваля-Стеклова (условием полноты). Тождество Бесселя (9) позволяет записать условие (12) в равносильной форме Тем самым выполнение условия полноты означает, что частичные суммы Sn(x) ряда Фурье функции /(х) сходятся к функции /(х) в среднем, т.е. по норме пространства 6]. Определение. Ортонормированная система { называется полной в Ь2[ау Ь], если всякую функцию можно с любой точностью приблизить в среднем линейной комбинацией вида с достаточно большим числом слагаемых, т. е. если для всякой функции/(х) € Ь2[а, Ь\ и для любого е > 0 найдется натуральное число nq и числа а\, а2у..., такие, что No Из приведенных рассуждений следует Теорема 7. Если ортонормированием система } полна в пространстве ряд Фурье всякой функции / по этой системе сходится к f(x) в среднем, т. е. по норме Можно показать, что тригонометрическая система полна в пространстве, Отсюда следует утверждение. Теорема 8. Если функция /о ее тригонометрический ряд Фурье сходится к ней в среднем. 9.5. Замкнутые системы. Полнота и замкнутость систем Определение. Ортонормированная система функций \, называется замкнутой, если в пространстве Li\a, Ь) не существует отличной от нуля функции, ортогональной ко всем функциям В пространстве L2\a, Ь\ понятия полноты и замкнутости ортонормированных систем совпадают. Упражнения 1. Разложите в ряд Фурье в интервале (-я-, ж) функцию 2. Разложите в ряд Фурье в интервале (-тг, тг) функцию 3. Разложите в ряд Фурье в интервале (-тг, тг) функцию 4. Разложите в ряд Фурье в интервале (-jt, тг) функцию 5. Разложите в ряд Фурье в интервале (-тг, тг) функцию f(x) = ж + х. 6. Разложите в ряд Фурье в интервале (-jt, тг) функцию п 7. Разложите в ряд Фурье в интервале (-тг, ж) функцию /(х) = sin2 х. 8. Разложите в ряд Фурье в интервале (-тг, jt) функцию f(x) = у 9. Разложите в ряд Фурье в интервале (-тт, -к) функцию /(х) = | sin х|. 10. Разложите в ряд Фурье в интервале (-я-, тг) функцию /(х) = §. 11. Разложите в ряд Фурье в интервале (-тг, тг) функцию f(x) = sin §. 12. Разложите в ряд Фурье функцию f(x) = п -2х, заданную в интервале (0, х), продолжив ее в интервал (-х, 0): а) четным образом; б) нечетным образом. 13. Разложите в ряд Фурье по синусам функцию /(х) = х2, заданную в интервале (0, х). 14. Разложите в ряд Фурье функцию /(х) = 3-х, заданную в интервале (-2,2). 15. Разложите в ряд Фурье функцию f(x) = |х|, заданную в интервале (-1,1). 16. Разложите в ряд Фурье по синусам функцию f(x) = 2х, заданную в интервале (0,1).

Транскрипт

1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ Р. К. Бельхеева РЯДЫ ФУРЬЕ В ПРИМЕРАХ И ЗАДАЧАХ Учебное пособие Новосибирск 211

2 УДК ББК В161 Б44 Б44 Бельхеева Р. К. Ряды Фурье в примерах и задачах: Учебное пособие / Новосиб. гос. ун-т. Новосибирск, с. ISBN В учебном пособии излагаются основные сведения о рядах Фурье, приведены примеры на каждую изучаемую тему. Детально разобран пример применения метода Фурье к решению задачи о поперечных колебаниях струны. Приведен иллюстративный материал. Имеются задачи для самостоятельного решения. Предназначено для студентов и преподавателей физического факультета НГУ. Печатается по решению методической комиссии физического факультета НГУ. Рецензент д-р физ.-мат. наук. В. А. Александров Пособие подготовлено в рамках реализации Программы развития НИУ-НГУ на гг. ISBN c Новосибирский государственный университет, 211 c Бельхеева Р. К., 211

3 1. Разложение 2π-периодической функции в ряд Фурье Определение. Рядом Фурье функции f(x) называется функциональный ряд a 2 + (a n cosnx + b n sin nx), (1) где коэффициенты a n, b n вычисляются по формулам: a n = 1 π b n = 1 π f(x) cosnxdx, n =, 1,..., (2) f(x) sin nxdx, n = 1, 2,.... (3) Формулы (2) (3) называют формулами Эйлера Фурье. Тот факт, что функции f(x) соответствует ряд Фурье (1) записывают в виде формулы f(x) a 2 + (a n cosnx + b n sin nx) (4) и говорят, что правая часть формулы (4) является формальным рядом Фурье функции f(x). Другими словами, формула (4) означает только то, что коэффициенты a n, b n найдены по формулам (2), (3). 3

4 Определение. 2π-периодическая функция f(x) называется кусочно-гладкой, если в промежутке [, π] найдется конечное число точек = x < x 1 <... < x n = π таких, что в каждом открытом промежутке (x j, x j+1) функция f(x) непрерывно дифференцируема, а в каждой точке x j существуют конечные пределы слева и справа: f(x j) = lim h + f(x j h), f(x j +) = lim h + f(x j + h), (5) f(x j h) f(x j) f(x j + h) f(x j +) lim, lim. h + h h + h (6) Отметим, что последние два предела превратятся в односторонние производные после замены предельных значений f(x j) и f(x j +) значениями f(x j). Теорема о представимости кусочно-гладкой функции в точке своим рядом Фурье (теорема о поточечной сходимости). Ряд Фурье кусочно-гладкой 2π-периодической функции f(x) сходится в каждой точке x R, а его сумма равна числу f(x), если x точка непрерывности функции f(x), f(x +) + f(x) и равна числу, если x точка разрыва 2 функции f(x). ПРИМЕР 1. Нарисуем график, найдем ряд Фурье функции, заданной на промежутке [, π] формулой, f(x) = x, предполагая, что она имеет период 2π, и вычислим суммы 1 1 числовых рядов (2n + 1) 2, n 2. n= Решение. Построим график функции f(x). Получим кусочно-линейную непрерывную кривую с изломами в точках x = πk, k целое число (рис. 1). 4

5 Рис. 1. График функции f(x) Вычислим коэффициенты Фурье a = 1 π f(x) dx = 1 π x 2 2 π = π, a n = 1 π f(x) cosnxdx = 2 π = 2 () x sin nx cos nx + π n n 2 = 2 π (1) n 1 n 2 = b n = 1 π π = 2 π f(x) cosnxdx = cos nx cos n 2 = 4 πn2, при n нечетном, при n четном, f(x) sin nxdx =, потому что функция f(x) четная. Запишем формальный ряд Фурье для функции f(x): f(x) π 2 4 π k= 5 cos (2k + 1)x (2k + 1) 2.

6 Выясним является ли функция f(x) кусочно-гладкой. Так как она непрерывна, вычислим только пределы (6) в конечных точках промежутка x = ±π и в точке излома x = : и f(π h) f(π) π h π lim = lim h + h h + h = 1, f(+ h) f(+) + h () lim = lim h + h h + h f(+ h) f(+) + h lim = lim = 1, h + h h + h = 1, f(h) f() h () lim = lim = 1. h + h h + h Пределы существуют и конечны, следовательно, функция кусочно-гладкая. По теореме о поточечной сходимости ее ряд Фурье сходится к числу f(x) в каждой точке, т. е. f(x) = π 2 4 π k= cos (2k + 1) + x (2k + 1) 2 = = π 2 4 (cosx + 19 π cos 3x) cos 5x (7) На рис. 2, 3 показан характер приближения частичных сумм ряда Фурье S n (x), где S n (x) = a n 2 + (a k coskx + b k sin kx), k=1 к функции f(x) в промежутке [, π]. 6

7 Рис. 2. График функции f(x) с наложенными на него графиками частичных сумм S (x) = a 2 и S 1(x) = a 2 + a 1 cos x Рис. 3. График функции f(x) с наложенным на него графиком частичной суммы S 99 (x) = a 2 + a 1 cos x + + a 99 cos 99x 7

8 Подставив в (7) x = получим: = π 2 4 π k= 1 (2k + 1) 2, откуда мы находим сумму числового ряда: = π2 8. Зная сумму этого ряда, легко найти следующую сумму Имеем: S = () S = ()= π S, следовательно S = π2 6, то есть 1 n = π Сумму этого знаменитого ряда впервые нашел Леонард Эйлер. Она часто встречается в математическом анализе и его приложениях. ПРИМЕР 2. Нарисуем график, найдем ряд Фурье функции заданной формулой f(x) = x для x < π, предполагая, что она имеет период 2π, и вычислим суммы числовых (1) n) рядов + n= ((2n + 1,) (k k + 1) Решение. График функции f(x) приведен на рис. 4. 8

9 Рис. 4. График функции f(x) Функция f(x) непрерывно-дифференцируема на промежутке (, π). В точках x = ±π, она имеет конечные пределы (5): f() =, f(π) = π. Кроме того существуют конечные пределы (6): f(+ h) f(+) lim = 1 и h + h f(π h) f(π +) lim = 1. h + h Значит, f(x) кусочно-гладкая функция. Так как функция f(x) нечетна, то a n =. Коэффициенты b n находим интегрированием по частям: b n = 1 π f(x) sin πnxdx= 1 [ x cosnx π πn + 1 n = 1 πn [(1)n π + (1) n π] = 2(1)n+1. n Составим формальный ряд Фурье функции 2(1) n+1 f(x) sin nx. n 9 cosnxdx ] =

10 Согласно теореме о поточечной сходимости кусочно-гладкой 2π-периодической функции ряд Фурье функции f(x) сходится к сумме: 2(1) n+1 sin nx = n f(x) = x, если π < x < π, = f(π) + f(π +) 2 =, если x = π, (8) f() + f(+) =, если x =. 2 На рис. 5 8 показан характер приближения частичных сумм S n (x) ряда Фурье к функции f(x). Рис. 5. График функции f(x) с наложенным на него графиком частичной суммы S 1 (x) = a 2 + a 1 cos x 1

11 Рис. 6. График функции f(x) с наложенным на него графиком частичной суммы S 2 (x) Рис. 7. График функции f(x) с наложенным на него графиком частичной суммы S 3 (x) 11

12 Рис. 8. График функции f(x) с наложенным на него графиком частичной суммы S 99 (x) Используем полученный ряд Фурье для нахождения сумм двух числовых рядов. Положим в (8) x = π/2. Тогда 2 () +... = π 2, или = n= (1) n 2n + 1 = π 4. Мы легко нашли сумму известного ряда Лейбница. Положив в (8) x = π/3, найдем () +... = π 2 3, или (1+ 1) () (k) 3π +...= 3k

13 ПРИМЕР 3. Нарисуем график, найдем ряд Фурье функции f(x) = sin x, предполагая, что она имеет период 2π, и 1 вычислим сумму числового ряда 4n 2 1. Решение. График функции f(x) приведен на рис. 9. Очевидно, f(x) = sin x непрерывная четная функция с периодом π. Но 2π тоже является периодом функции f(x). Рис. 9. График функции f(x) Вычислим коэффициенты Фурье. Все b n = потому, что функция четная. Пользуясь тригонометрическими формулами вычислим a n при n 1: a n = 1 π = 1 π sin x cosnxdx = 2 π sin x cosnxdx = (sin(1 + n)x sin(1 n)x) dx = = 1 () π cos(1 + n)x cos(1 n)x + = 2 () 1 + (1) n = π 1 + n 1 n π 1 n 2 { 4 1, если n = 2k, = π n 2 1, если n = 2k

14 Это вычисление не позволяет нам найти коэффициент a 1, потому что при n = 1 знаменатель обращается в ноль. Поэтому вычислим коэффициент a 1 непосредственно: a 1 = 1 π sin x cosxdx =. Так как f(x) непрерывно дифференцируема на (,) и (, π) и в точках kπ, (k целое число), существуют конечные пределы (5) и (6), то ряд Фурье функции сходится к ней в каждой точке: = 2 π 4 π sinx = 2 π 4 π cos 2nx 4n 2 1 = (1 1 cos 2x cos 4x + 1) cos 6x На рис показан характер приближения функции f(x) частичными суммами ряда Фурье.. (9) Рис. 1. График функции f(x) с наложенным на него графиком частичной суммы S (x) 14

15 Рис. 11. График функции f(x) с наложенным на него графиком частичной суммы S 1 (x) Рис. 12. График функции f(x) с наложенным на него графиком частичной суммы S 2 (x) Рис. 13. График функции f(x) с наложенным на него графиком частичной суммы S 99 (x) 15

16 1 Вычислим сумму числового ряда. Для этого 4n 2 1 положим в (9) x =. Тогда cosnx = 1 для всех n = 1, 2,... и Следовательно, 2 π 4 π 1 4n 2 1 =. 1 4n 2 1 = = 1 2. ПРИМЕР 4. Докажем, что если кусочно-гладкая непрерывная функция f(x) удовлетворяет условию f(x π) = f(x) для всех x (т. е. является π-периодической), то a 2n 1 = b 2n 1 = для всех n 1, и наоборот, если a 2n 1 = b 2n 1 = для всех n 1, то f(x) π-периодическая. Решение. Пусть функция f(x) является π-периодической. Вычислим ее коэффициенты Фурье a 2n 1 и b 2n 1: = 1 π (a 2n 1 = 1 π f(x) cos(2n 1)xdx + f(x) cos(2n 1)xdx =) f(x) cos(2n 1)xdx. В первом интеграле сделаем замену переменной x = t π : f(x) cos(2n 1)xdx = f(t π) cos(2n 1)(t + π) dt. 16

17 Пользуясь тем, что cos(2n 1)(t + π) = cos(2n 1)t и f(t π) = f(t), получим: a 2n 1 = 1 π (f(x) cos(2n 1)x dx+) f(x) cos(2n 1)x dx =. Аналогично доказывается, что b 2n 1 =. Наоборот, пусть a 2n 1 = b 2n 1 =. Так как функция f(x) непрерывна, то по теореме о представимости функции в точке своим рядом Фурье имеем Тогда f(x π) = = f(x) = (a 2n cos 2nx + b 2n sin 2nx). (a2n cos 2n(x π) + b 2n sin 2n(x π)) = (a2n cos 2nx + b 2n sin 2nx) = f(x), что и означает, что f(x) является π-периодической функцией. ПРИМЕР 5. Докажем, что если кусочно-гладкая функция f(x) удовлетворяет условию f(x) = f(x) для всех x, то a = и a 2n = b 2n = для всех n 1, и наоборот, если a = a 2n = b 2n =, то f(x π) = f(x) для всех x. Решение. Пусть функция f(x) удовлетворяет условию f(x π) = f(x). Вычислим ее коэффициенты Фурье: 17

18 = 1 π (a n = 1 π f(x) cos nxdx + f(x) cosnxdx =) f(x) cosnxdx. В первом интеграле сделаем замену переменной x = t π. Тогда f(x) cosnxdx = f(t π) cosn(t π) dt. Пользуясь тем, что cos n(t π) = (1) n cosnt и f(t π) = f(t), получим: a n = 1 π ((1) n) f(t) cosnt dt =, если n четное, = 2 π f(t) cos nt dt, если n нечетное. π Аналогично доказывается, что b 2n =. Наоборот, пусть a = a 2n = b 2n =, для всех n 1. Так как функция f(x) непрерывна, то по теореме о представимости функция в точке своим рядом Фурье справедливо равенство f(x) = (a 2n 1 cos (2n 1)x + b 2n 1 sin (2n 1)x). 18

19 Тогда = f(x π) = = = f(x). ПРИМЕР 6. Изучим как следует продолжить интегрируемую на промежутке [, π/2] функцию f(x) на промежуток [, π], чтобы ее ряд Фурье имел вид: a 2n 1 cos(2n 1)x. (1) Решение. Пусть график функции имеет вид, приведенный на рис. 14. Поскольку в ряде (1) a = a 2n = b 2n = для всех n, то из примера 5 следует, что функция f(x) должна удовлетворять равенству f(x π) = f(x) для всех x. Это наблюдение дает способ продолжения функции f(x) на промежуток [, /2] : f(x) = f(x+π), рис. 15. Из того, что ряд (1) содержит только косинусы, заключаем, что продолженная функция f(x) должна быть четной (т. е. ее график должен быть симметричен относительно оси Oy), рис

20 Рис. 14. График функции f(x) Рис. 15. График продолжения функции f(x) на промежуток [, /2] 2

21 Итак, искомая функция имеет вид, приведенный на рис. 16. Рис. 16. График продолжения функции f(x) на промежуток [, π] Подводя итог, заключаем что функцию следует продолжить следующим образом: f(x) = f(x), f(π x) = f(x), то есть на промежутке [π/2, π], график функции f(x) центрально симметричен относительно точки (π/2,), а на промежутке [, π] ее график симметричен относительно оси Oy. 21

22 ОБОБЩЕНИЕ ПРИМЕРОВ 3 6 Пусть l >. Рассмотрим два условия: а) f(l x) = f(x); б) f(l + x) = f(x), x [, l/2]. С геометрической точки зрения условие (а) означает, что график функции f(x) симметричен относительно вертикальной прямой x = l/2, а условие (б) что график f(x) центрально симметричен относительно точки (l/2;) на оси абсцисс. Тогда справедливы следующие утверждения: 1) если функция f(x) четная и выполнено условие (а), то b 1 = b 2 = b 3 =... =, a 1 = a 3 = a 5 =... = ; 2) если функция f(x) четная и выполнено условие (б), то b 1 = b 2 = b 3 =... =, a = a 2 = a 4 =... = ; 3) если функция f(x) нечетная и выполнено условие (а), то a = a 1 = a 2 =... =, b 2 = b 4 = b 6 =... = ; 4) если функция f(x) нечетная и выполнено условие (б), то a = a 1 = a 2 =... =, b 1 = b 3 = b 5 =... =. ЗАДАЧИ В задачах 1 7 нарисуйте графики и найдите ряды Фурье для функций, { предполагая, что они имеют период 2π:, если < x <, 1. f(x) = 1, если < x < π. 1, если < x < /2, 2. f(x) =, если /2 < x < π/2, 1, если π/2 < x < π. 3. f(x) = x 2 (< x < π). 4. f(x) = x 3 (< x < π). { π/2 + x, если < x <, 5. f(x) = π/2 x, если < x < π. 22

23 { 1, если /2 < x < π/2, 6. f(x) = 1, если π/2 < x < 3π/2. {, если < x <, 7. f(x) = sin x, если < x < π. 8. Как следует продолжить интегрируемую на промежутке [, π/2] функцию f(x) на промежуток [, π], чтобы ее ряд Фурье имел вид: b 2n 1 sin (2n 1)x? Ответы sin(2n 1)x sin(2n + 1)x. π 2n 1 π 2n + 1 n= 3. 1 (1) n () 12 3 π2 + 4 cosnx. 4. (1) n n 2 n 2π2 sin nx. 3 n 5. 4 cos(2n + 1)x π (2n + 1) (1) n cos(2n + 1)x. π 2n + 1 n= n= 7. 1 π sin x 2 cos 2nx. 8. Функцию следует продолжить следующим образом: f(x) = f(x), f(π x) = f(x), π 4n 2 1 то есть на промежутке [, π], график функции f(x) будет симметричен относительно вертикальной прямой x = π/2, на промежутке [, π] ее график центрально симметричен относительно точки (,). 23

24 2. Разложение функции, заданной в промежутке [, π], только по синусам или только по косинусам Пусть функция f задана в промежутке [, π]. Желая разложить ее в этом промежутке в ряд Фурье, мы сначала продолжим f в промежуток [, π] произвольным образом, а затем воспользуемся формулами Эйлера Фурье. Произвол в продолжении функции приводит к тому, что для одной и той же функции f: [, π] R мы можем получать различные ряды Фурье. Но можно использовать этот произвол так, чтобы получить разложение только по синусам или только по косинусам: в первом случае достаточно продолжить f нечетным образом, а во-втором четным. Алгоритм решения 1. Продолжить функцию нечетным (четным) образом на (,), а затем периодически с периодом 2π продолжить функцию на всю ось. 2. Вычислить коэффициенты Фурье. 3. Составить ряд Фурье функции f(x). 4. Проверить условия сходимости ряда. 5. Указать функцию, к которой будет сходиться этот ряд. ПРИМЕР 7. Разложим функцию f(x) = cosx, < x < π, в ряд Фурье только по синусам. Решение. Продолжим функцию нечетным образом на (,) (т. е. так, чтобы равенство f(x) = f(x) выполнялось для всех x (, π)), а затем периодически с периодом 2π на всю ось. Получим функцию f (x), график которой приведен на рис

25 Рис. 17. График продолженной функции Очевидно, что функция f (x) кусочно-гладкая. Вычислим коэффициенты Фурье: a n = для всех n потому, что функция f (x) нечетна. Если n 1, то b n = 2 π f(x) sin πnxdx = 2 π cosx sin nxdx = = 2 π dx = = 2 π cos (n + 1) x cos (n 1) x + = π n + 1 n 1 = 1 (1) n (1)n 1 1 = π n + 1 n 1 = 1, если n = 2 k + 1, (1)n+1 (n 1) + (n + 1) = π (n + 1)(n 1) 2 2n, если n = 2k. π n 2 1 При n = 1 в предыдущих вычислениях знаменатель обращается в ноль, поэтому коэффициент b 1 вычислим непосред- 25

26 ственно: b 1 = 2 π cosx sin xdx =. Составим ряд Фурье функции f (x) : f (x) 8 π k=1 k 4k 2 1 sin 2kx. Поскольку функция f (x) кусочно-гладкая, то по теореме о поточечной сходимости ряд Фурье функции f (x) сходится к сумме: cosx, если π < x <, S(x) =, если x =, x = ±π, cosx, если < x < π. В результате функция f(x) = cosx, заданная на промежутке (, π), выражена через синусы: cosx = 8 π k=1 k 4k 2 1 sin 2kx, x (, π). Рис демонстрируют постепенное приближение частичных сумм S 1 (x), S 2 (x), S 3 (x) к разрывной функции f (x). 26

27 Рис. 18. График функции f (x) с наложенным на него графиком частичной суммы S 1 (x) Рис. 19. График функции f(x) с наложенным на него графиком частичной суммы S 2 (x) 27

28 Рис. 2. График функции f (x) с наложенным на него графиком частичной суммы S 3 (x) На рис. 21 приведены графики функции f (x) и ее частичной суммы S 99 (x). Рис. 21. График функции f (x) с наложенным на него графиком частичной суммы S 99 (x) 28

29 ПРИМЕР 8. Разложим функцию f(x) = e ax, a >, x [, π], в ряд Фурье только по косинусам. Решение. Продолжим функцию четным образом на (,) (т. е. так, чтобы равенство f(x) = f(x) выполнялось для всех x (, π)), а затем периодически с периодом 2π на всю числовую ось. Получим функцию f (x), график которой представлен на рис. 22. Функция f (x) в точках Рис. 22. График продолженной функции f (x) x = kπ, k целое число, имеет изломы. Вычислим коэффициенты Фурье: b n =, так как f (x) четная. Интегрируя по частям получаем 29

30 a n = 2 π a = 2 π = 2 cosnxd(e ax) = 2 πa e ax dx = 2 π a (eaπ 1), f(x) cos πnxdx = 2 π πa eax cosnx = 2 πa (eaπ cosnπ 1) + 2n πa 2 π e ax cos nxdx = + 2n e ax sin nxdx = πa sin nxde ax = = 2 π a (eaπ cos n π 1) + 2n π sin nx π a 2eax 2n2 e ax cos nxdx = 2 π a 2 π a (eaπ cos n π 1) n2 a a n. 2 Следовательно, a n = 2a e aπ cos n π 1. π a 2 + n 2 Поскольку f (x) непрерывна, то согласно теореме о поточечной сходимости ее ряд Фурье сходится к f (x). Значит, для всех x [, π] имеем f(x) = 1 π a (eaπ 1)+ 2a π k=1 e aπ (1) k 1 a 2 + k 2 coskx (x π). Рис демонстрируют постепенное приближение частичных сумм ряда Фурье к заданной разрывной функции. 3

31 Рис. 23. Графики функций f (x) и S (x) Рис. 24. Графики функций f (x) и S 1 (x) Рис. 25. Графики функций f (x) и S 2 (x) Рис. 26. Графики функций f (x) и S 3 (x) 31

32 Рис. 27. Графики функций f (x) и S 4 (x) Рис. 28. Графики функций f (x) и S 99 (x) ЗАДАЧИ 9. Разложите функцию f(x) = cos x, x π, в ряд Фурье только по косинусам. 1. Разложите функцию f(x) = e ax, a >, x π, в ряд Фурье только по синусам. 11. Разложите функцию f(x) = x 2, x π, в ряд Фурье только по синусам. 12. Разложите функцию f(x) = sin ax, x π, в ряд Фурье по только косинусам. 13. Разложите функцию f(x) = x sin x, x π, в ряд Фурье только по синусам. Ответы 9. cosx = cosx. 1. e ax = 2 [ 1 (1) k e aπ] k sin kx. π a 2 + k2 k=1 11. x 2 2 [ π 2 (1) n 1 π n + 2 ] n 3 ((1)n 1) sin nx. 32

33 12. Если a не является целым числом, то sin ax = 1 cosaπ {1 + +2a cos 2nx } + π a 2 (2n) 2 +2a 1 + cosaπ cos(2n 1)x π a 2 (2n 1) 2; если a = 2m четное число, то sin 2mx = 8m cos(2n 1)x π (2m) 2 (2n 1) 2; если a = 2m 1 положительное нечетное число, то sin(2m 1)x = 2 { cos 2nx } 1 + 2(2m 1). π (2m 1) 2 (2n) π 16 n sin x sin 2nx. 2 π (4n 2 1) 2 3. Ряд Фурье функции с произвольным периодом Предположим, что функция f(x) задана в промежутке [ l, l], l >. Сделав подстановку x = ly, y π, получим функцию g(y) = f(ly/π), определенную в промежутке π [, π]. Этой функции g(y) соответствует (формальный) ряд Фурье () ly f = g(y) a π 2 + (a n cosny + b n sin ny), коэффициенты которого находятся по формулам Эйлера Фурье: a n = 1 π g(y) cosny dy = 1 π f (ly π) cos ny dy, n =, 1, 2,..., 33

34 b n = 1 π g(y) sinny dy = 1 π f () ly sin ny dy, n = 1, 2,.... π Возвращаясь к старой переменной, т. е. полагая в выписанных формулах y = πx/l, мы получим для функции f(x) тригонометрический ряд несколько измененного вида: где f(x) a 2 + a n = 1 l b n = 1 l l l l l (a n cos πnx l f(x) cos πnx l f(x) sin πnx l + b n sin πnx), (11) l dx, n =, 1, 2,..., (12) dx, n = 1, 2,.... (13) Говорят, что формулы (11) (13) задают разложение в ряд Фурье функции с произвольным периодом. ПРИМЕР 9. Найдем ряд Фурье функции, заданной в промежутке (l, l) выражением { A, если l < x, f(x) = B, если < x < l, считая, что она периодична с периодом 2l. Решение. Продолжим функцию периодически, с периодом 2l, на всю ось. Получим функцию f (x), кусочно-постоянную в промежутках (l + 2kl, l + 2kl), и претерпевающую разрывы первого рода в точках x = lk, k целое число. Ее коэффициенты Фурье вычисляются по формулам (12) и (13): 34

35 a = 1 l l f(x) dx = 1 l A dx + 1 l l B dx = A + B, l l a n = 1 l l l f(x) cos πnx l dx = = 1 l = 1 l l A cos πnx l = A + B π n l b n = 1 l dx + 1 l l B cos πnx l sin πn =, если n, l l A sin πnx l f(x) sin πnx l dx + 1 l l dx = B sin πnx l = B A (1 cosπn). πn Составим ряд Фурье функции f (x) : f(x) A + B π (B A Так как cosπn = (1) n, то n dx = dx = (1 cosπn) sin πnx). l при n = 2k получаем b n = b 2k =, при n = 2k 1 b n = b 2k 1 = 35 2(B A) π(2k 1).

36 Отсюда f(x) A + B (B A) π (sin πx + 1 3πx sin + 1 5πx sin +... l 3 l 5 l Согласно теореме о поточечной сходимости ряд Фурье функции f(x) сходится к сумме A, если l < x, S(x) = A + B, если x =, x = ±l, 2 B, если < x < l. Придавая параметрам l, A, B конкретные значения получим разложения в ряд Фурье различных функций. Пусть l = π, A =, B = 3π. На рис. 29 приведены графики первых пяти членов ряда, функции f (x) и частичной суммы S 7 (x) = a 2 + b 1 sin x b 7 sin 7x. Величина a является средним значением функции на промежутке. Обратим внимание на то, что с возрастанием ча- 2 стоты гармоники ее амплитуда уменьшается. Для наглядности графики трех высших гармоник сдвинуты по вертикали. На рис. 3 приведен график функции f(x) и частичной суммы S 99 (x) = a 2 + b 1 sin x b 99 sin 99x. Для наглядности на рис. 31 приведен тот же график в другом масштабе. Последние два графика иллюстрируют явление Гиббса. 36).

37 Рис. 29. График функции f (x) с наложенными на него графиками гармоник S (x) = a 2 и S 1(x) = b 1 sinx. Для наглядности графики трех высших гармоник S 3 (x) = b 3 sin 3πx, S l 5 (x) = b 5 sin 5πx l и S 7 (x) = b 7 sin 7πx сдвинуты по вертикали вверх l 37

38 Рис. 3. График функции f(x) с наложенным на него графиком частичной суммы S 99 (x) Рис. 31. Фрагмент рис. 3 в другом масштабе 38

39 ЗАДАЧИ В задачах разложить в ряды Фурье указанные функции в заданных промежутках. 14. f(x) = x 1, (1, 1). 15. f(x) = ch2x, (2, 2] f(x) = x (1 x), (1, 1]. 17. f(x) = cos π x, [ 1, 1] f(x) = sin π x, (1, 1). { 2 1, если 1 < x < 1, 19. f(x) = 2l = 4., если 1 < x < 3; x, если x 1, 2. f(x) = 1, если 1 < x < 2, 2l = 3. { 3 x, если 2 x < 3;, если ωx, 21. f(x) = 2l = 2π/ω. sin ωx, если ωx π; Разложить в ряды Фурье: а) только по косинусам; б) только по синусам указанные функции в заданных промежутках (, l) { 22. f(x) = { 23. f(x) = ax, если < x < l/2, a(l x), если l/2 < x < l. 1, если < x 1, 2 x, если 1 x 2. Ответы 14. f(x) = 4 cos(2n 1)πx. π 2 (2n 1) f(x) = sh sh4 (1) n nπx cos 16 + π 2 n f(x) = cos 2nπx. π 2 n f(x) = 2 π + 8 π (1) n n 1 4n 2 cosnπx. 39

40 18. f(x) = 8 (1) n n sin nπx. π 1 4n (1) n 2n + 1 cos πx. π 2n πn 2πnx π 2 sin2 cos n π sin ωx 2 cos 2nωx π 4n 2 1. (l 22. а) f(x) = al 4 2) 1 (4n 2)πx cos, π 2 (2n 1) 2 l б) f(x) = 4al (1) n 1 (2n 1)πx sin. π 2 (2n 1) 2 l 23. а) f(x) = (cos π π 2 2 x 2 2 cos 2π 2 2 x cos 3π 2 2 x cos 5π), 2 2 x... б) f(x) = 4 (sin π π 2 2 x 1 3 sin 3π)+ 2 2 x (sin π π 2 x cos 2π) 2 x Комплексная форма ряда Фурье Разложение f(x) = c n e inx, где c n = 1 2π f(x)e inx dx, n = ±1, ±2,..., называется комплексной формой ряда Фурье. Функция разлагается в комплексный ряд Фурье при выполнении тех же условий, при которых она разлагается в вещественный ряд Фурье. 4

41 ПРИМЕР 1. Найдем ряд Фурье в комплексной форме функции, заданной формулой f(x) = e ax, в промежутке [, π), где a вещественное число. Решение. Вычислим коэффициенты: = c n = 1 2π f(x)e inx dx = 1 2π e (a in)x dx = 1 ((1) n e aπ (1) n e aπ) = (1)n sh aπ. 2π(a in) π(a in) Комплексный ряд Фурье функции f имеет вид f(x) sh aπ π n= (1) n a in einx. Убедимся, что функция f(x) является кусочно-гладкой: в промежутке (, π) она непрерывно-дифференцируема, и в точках x = ±π существуют конечные пределы (5), (6) lim h + ea(+h) = e aπ, lim h + ea(π h) = e aπ, e a(+h) e a(+) lim h + h = ae aπ e a(π h) e a(π), lim h + h = ae aπ. Следовательно, функция f(x) представима рядом Фурье sh aπ π n= (1) n a in einx, который сходится к сумме: { e S(x) = ax, если π < x < π, ch a, если x = ±π. 41

42 ПРИМЕР 11. Найдем ряд Фурье в комплексной и вещественной форме функции, заданной формулой f(x) = 1 a 2 1 2a cosx + a2, где a < 1, a R. Решение. Функция f(x) является четной, поэтому для всех n b n =, а a n = 2 π f(x) cosnxdx = 2 (1 a2) π cos nxdx 1 2a cosx + a 2. Не будем вычислять такой сложный интеграл, а применим следующий прием: 1. используя формулы Эйлера sin x = eix e ix 2i = z z 1, cosx = eix + e ix 2i 2 = z + z 1, 2 где z = e ix, преобразуем f(x) к рациональной функции комплексной переменной z; 2. полученную рациональную функцию разложим на простейшие дроби; 3. разложим простейшую дробь по формуле геометрической прогрессии; 4. упростим полученную формулу. Итак, по формулам Эйлера получаем = f(x) = 1 a 2 1 a(z + z 1) + a 2 = (a 2 1)z (z a)(z a 1) = a z a az. (14) 42

43 Напомним, что сумма бесконечной геометрической прогрессии со знаменателем q (q < 1) вычисляется по формуле: + n= q n = 1 1 q. Эта формула верна как для вещественных, так и для комплексных чисел. Поскольку az = a < 1 и a/z = a < 1, то az = + a n z n = a n e inx, a z a = a z 1 1 a/z = a z n= + n= a n z = + n n= n= a n+1 z = + a n+1 e i(n+1)x. n+1 После замены переменной (n + 1) = k, < k < 1, получим: 1 a z a = a k e ikx. Следовательно, f(x) + n= k= c n e inx, где c n = n= { a n, если n, a n, если n <, то есть c n = a n. Поскольку функция f(x) непрерывна, то в силу теоремы о поточечной сходимости имеет место равенство: f(x) = + n= a n e inx. Тем самым мы разложили функцию f(x) в ряд Фурье в комплексной форме. 43

44 Теперь найдем ряд Фурье в вещественной форме. Для этого сгруппируем слагаемые с номерами n и n для n: a n e inx + a n e inx = 2a neinx + e inx Поскольку c = 1, то 2 = 2a n cos nx. f(x) = 1 a 2 1 2a cosx + a = a n cosnx. 2 Это ряд Фурье в вещественной форме функции f(x). Таким образом, не вычислив ни одного интеграла, мы нашли ряд Фурье функции. При этом мы вычислили трудный интеграл, зависящий от параметра cos nxdx 1 2a cosx + a = 2 π an 2 1 a2, a < 1. (15) ПРИМЕР 12. Найдем ряд Фурье в комплексной и вещественной форме функции, заданной формулой a sin x f(x) = 1 2a cosx + a2, a < 1, a R. Решение. Функция f(x) является нечетной, поэтому для всех n a n = и b n = 2 π f(x) sin nxdx = 2a π sin x sin nxdx 1 2a cosx + a 2. Чтобы записать ряд Фурье нужно вычислить сложные интегралы или воспользоваться приемом, описанным выше. Поступим вторым способом: 44

45 a(z z 1) f(x) = 2i (1 a(z z 1) + a 2) = i 2 + i (a + a 1)z 2 2 (z a)(z a 1) = = i 2 + i () a 2 z a + a 1. z a 1 Каждую из простых дробей разложим по формуле геометрической прогрессии: + a z a = a 1 z 1 a = a a n z z n, n= z a 1 z a = az = a n z n. n= Это возможно, так как az = a/z = a < 1. Значит + ia n /2, если n <, f(x) c n e inx, где c n =, если n =, n= ia n /2, если n >, или, более коротко, c n = 1 2i a n sgnn. Тем самым, ряд Фурье в комплексной форме найден. Сгруппировав слагаемые с номерами n и n получим ряд Фурье функции в вещественной форме: = f(x) = + a sin x 1 2a cosx + a + 2 (1 2i an e inx 1 2i an e inx n= +) = c n e inx = a n sin nx. Вновь нам удалось вычислить следующий сложный интеграл: sin x sin nxdx 1 2a cosx + a 2 = π an 1. (16) 45

46 ЗАДАЧИ 24. Используя (15), вычислите интеграл cos nxdx 1 2a cosx + a 2 для вещественных a, a > Используя (16), вычислите интеграл sin x sin nxdx для вещественных a, a > a cosx + a2 В задачах найдите ряды Фурье в комплексной форме для функций. 26. f(x) = sgn x, π < x < π. 27. f(x) = ln(1 2a cosx + a 2), a < 1. 1 a cosx 28. f(x) = 1 2a cosx + a2, a < Докажите, что функция f, определенная в промежутке [, π], вещественнозначна, если и только если коэффициенты c n ее комплексного ряда Фурье связаны соотношениями c n = c n, n =, ±1, ±2, Докажите, что функция f, определенная в промежутке [, π], является четной (т. е. удовлетворяет соотношению f(x) = f(x)), если и только если коэффициенты c n ее комплексного ряда Фурье связаны соотношениями c n = c n, n = ±1, ±2, Докажите, что функция f, определенная в промежутке [, π], является нечетной (т. е. удовлетворяет соотношению f(x) = f(x)), если и только если коэффициенты c n ее комплексного ряда Фурье связаны соотношениями c n = c n, n =, ±1, ±2,.... Ответы 1 2π 24. a n a π a n i + e 2inx, где подразумевается, что слагаемое, соответствующее n =, пропущено. π n n= a n n cosnx. 28. a n cosnx. n= 46

47 5. Равенство Ляпунова Теорема (равенство Ляпунова). Пусть функция f: [, π] R такова, что f 2 (x) dx < +, и пусть a n, b n ее коэффициенты Фурье. Тогда справедливо равенство, a (a 2 n + b2 n) = 1 π называемое равенством Ляпунова. f 2 (x) dx, ПРИМЕР 13. Напишем равенство Ляпунова для функции { 1, если x < a, f(x) =, если a < x < π и найдем с его помощью суммы числовых рядов + sin 2 na n 2 и + Решение. Очевидно, 1 (2n 1) 2. 1 π f 2 (x) dx = 1 π a a dx = 2a π. Так как f(x) четная функция, то для всех n имеем b n =, a = 2 π f(x) dx = 2 π a dx = 2a π, 47

48 a n = 2 π f(x) cosnxdx = 2 π a cos nxdx = 2 sin na πn. Поэтому равенство Ляпунова для функции f(x) принимает вид: 2 a 2 π + 4 sin 2 na = 2a 2 π 2 n 2 π. Из последнего равенства для a π находим sin 2 na n 2 = a(π a) 2 Полагая a = π 2, получаем sin2 na = 1 при n = 2k 1 и sin 2 na = при n = 2k. Следовательно, k=1 1 (2k 1) 2 = = π2 8. ПРИМЕР 14. Напишем равенство Ляпунова для функции f(x) = x cosx, x [, π], и найдем с его помощью сумму числового ряда (4n 2 + 1) 2 (4n 2 1) 4. 1 π Решение. Прямые вычисления дают = π π f 2 (x) dx = 1 π x 2 cos 2 xdx = 1 π x sin 2xdx = π π x cos x = π x 21 + cos 2x dx = 2 π 1 4π cos 2xdx =

49 Поскольку f(x) четная функция, то для всех n имеем b n =, a n = 2 π = 1 π 1 = π(n + 1) = f(x) cosnxdx = 2 π 1 cos(n + 1)x π(n + 1) 2 x cosxcosnxdx = x (cos(n + 1)x + cos(n 1)x) dx = 1 π sin(n + 1)xdx sin(n 1)xdx = π(n 1) π π 1 + cos(n 1)x = π(n 1) 2 1 (= (1) (n+1) 1) 1 (+ (1) (n+1) 1) = π(n + 1) 2 π(n 1) 2 () = (1)(n+1) 1 1 π (n + 1) + 1 = 2 (n 1) 2 = 2 (1)(n+1) 1 n k π (n 2 1) = π (4k 2 1) 2, если n = 2k, 2, если n = 2k + 1. Коэффициент a 1 необходимо вычислить отдельно, поскольку в общей формуле при n = 1 знаменатель дроби обращается в ноль. = 1 π a 1 = 2 π f(x) cosxdx = 2 π x(1 + cos 2x)dx = π 2 1 2π 49 x cos 2 xdx = sin 2xdx = π 2.

50 Таким образом, равенство Ляпунова для функции f(x) имеет вид: 8 π + π (4n 2 + 1) 2 π 2 (4n 2 1) = π , откуда находим сумму числового ряда (4n 2 + 1) 2 (4n 2 1) = π π ЗАДАЧИ 32. Напишите равенство Ляпунова для функции { x f(x) = 2 πx, если x < π, x 2 πx, если π < x. 33. Напишите равенства Ляпунова для функций f(x) = cos ax и g(x) = sin ax, x [, π]. 34. Используя результат предыдущей задачи и предполагая, что a не является целым числом, выведите следующие классические разложения функций πctgaπ и (π/ sin aπ) 2 по рациональным функциям: πctgaπ = 1 a + + 2a a 2 n 2, (π) = sin aπ (a n) 2. n= 35. Выведите комплексную форму обобщенного равенства Ляпунова. 36. Покажите, что комплексная форма равенства Ляпунова справедлива не только для вещественнозначных функций, но и для комплекснозначных функций. 5

51 π (2n + 1) = π sin 2απ 2απ = 2sin2 απ α 2 π 2 Ответы + 4 sin2 απ π 2 α 2 (α 2 n 2) 2; sin 2απ 1 2απ = απ n 2 4sin2 π 2 (α 2 n 2) 2. 1 π 35. f(x)g(x) dx= c n d n, где c n коэффициент Фурье 2π функции f(x), а d n коэффициент Фурье функции g(x). 6. Дифференцирование рядов Фурье Пусть f: R R непрерывно дифференцируемая 2π-периодическая функция. Ее ряд Фурье имеет вид: f(x) = a 2 + (a n cos nx + b n sin nx). Производная f (x) этой функции будет непрерывной и 2π-периодической функцией, для которой можно записать формальный ряд Фурье: f (x) a 2 + (a n cos nx + b n sin nx), где a, a n, b n, n = 1, 2,... коэффициенты Фурье функции f (x). 51

52 Теорема (о почленном дифференцировании рядов Фурье). При сделанных выше предположениях справедливы равенства a =, a n = nb n, b n = na n, n 1. ПРИМЕР 15. Пусть кусочно-гладкая функция f(x) непрерывна в промежутке [, π]. Докажем, что при выполнении условия f(x)dx = имеет место неравенство 2 dx 2 dx, называемое неравенством Стеклова, и убедимся, что равенство в нем осуществляется лишь для функций вида f(x) = A cosx. Иными словами, неравенство Стеклова дает условия, при выполнении которых из малости производной (в среднеквадратичном) следует малость функции (в среднеквадратичном). Решение. Продолжим функцию f(x) на промежуток [, ] четным образом. Обозначим продолженную функцию тем же символом f(x). Тогда продолженная функция будет непрерывной и кусочно-гладкой на отрезке [, π]. Так как функция f(x) непрерывна, то f 2 (x) непрерывна на отрезке и 2 dx < +, следовательно, можно применить теорему Ляпунова, согласно которой имеет место равенство 1 π 2 dx = a () a 2 n + b 2 n. 52

53 Так как продолженная функция четная, то b n =, a = по условию. Следовательно, равенство Ляпунова принимает вид 1 π 2 dx = a 2 π n. (17) Убедимся, что для f (x) выполняется заключение теоремы о почленном дифференцировании ряда Фурье, то есть что a =, a n = nb n, b n = na n, n 1. Пусть производная f (x) претерпевает изломы в точках x 1, x 2,..., x N в промежутке [, π]. Обозначим x =, x N+1 = π. Разобьем промежуток интегрирования [, π] на N +1 промежуток (x, x 1),..., (x N, x N+1), на каждом из которых f(x) непрерывно дифференцируема. Тогда, используя свойство аддитивности интеграла, а затем интегрируя по частям, получим: b n = 1 π = 1 π = 1 π f (x) sin nxdx = 1 π N f(x) sin nx j= N f(x) sin nx j= x j+1 x j x j+1 x j n n π N j= x j+1 x j x j+1 x j f (x) sin nxdx = f(x) cosnxdx = f(x) cosnxdx = = 1 π [(f(x 1) sin nx 1 f(x) sin nx) + + (f(x 2) sinnx 2 f(x 1) sin nx 1)

54 + (f(x N+1) sin nx N+1 f(x N) sin nx N)] na n = = 1 π na n = = 1 π na n = na n. x j+1 a = 1 f (x)dx = 1 N f (x)dx = π π j= x j = 1 N x j+1 f(x) π = 1 (f(π) f()) =. x j π j= Последнее равенство имеет место в силу того, что функция f(x) была продолжена четным образом, а значит f(π) = f(). Аналогично получим a n = nb n. Мы показали, что теорема о почленном дифференцировании рядов Фурье для непрерывной кусочно-гладкой 2π-периодической функции, производная которой в промежутке [, π] претерпевает разрывы первого рода, верна. Значит f (x) a 2 + (a n cosnx + b n sin nx) = (na n)sin nx, так как a =, a n = nb n =, b n = na n, n = 1, 2,.... Поскольку 2 dx < +, то по равенству Ляпунова 1 π 2 dx = 54 n 2 a 2 n. (18)

55 Так как каждый член ряда в (18) больше или равен соответствующего члена ряда в (17), то 2 dx 2 dx. Вспоминая, что f(x) является четным продолжением исходной функции, имеем 2 dx 2 dx. Что и доказывает равенство Стеклова. Теперь исследуем для каких функций в неравенстве Стеклова имеет место равенство. Если хоть для одного n 2, коэффициент a n отличен от нуля, то a 2 n < na 2 n. Следовательно, равенство a 2 n = n 2 a 2 n возможно только если a n = для n 2. При этом a 1 = A может быть произвольным. Значит в неравенстве Стеклова равенство достигается только на функциях вида f(x) = A cosx. Отметим, что условие πa = f(x)dx = (19) существенно для выполнения неравенства Стеклова, ведь если условие (19) нарушено, то неравенство примет вид: a a 2 n n 2 a 2 n, а это не может быть верно при произвольном a. 55

56 ЗАДАЧИ 37. Пусть кусочно-гладкая функция f(x) непрерывна в промежутке [, π]. Докажите, что при выполнении условия f() = f(π) = имеет место неравенство 2 dx 2 dx, также называемое неравенством Стеклова, и убедитесь, что равенство в нем имеет место лишь для функций вида f(x) = B sin x. 38. Пусть функция f непрерывна в промежутке [, π] и имеет в нем (за исключением разве лишь конечного числа точек) производную f (x), интегрируемую с квадратом. Докажите, что если при этом выполнены условия f() = f(π) и f(x) dx =, то имеет место неравенство 2 dx 2 dx, называемое неравенством Виртингера, причем равенство в нем имеет место лишь для функций вида f(x) = A cosx + B sin x. 56

57 7. Применение рядов Фурье для решения дифференциальных уравнений в частных производных При изучении реального объекта (явления природы, производственного процесса, системы управления и т. д.) существенными оказываются два фактора: уровень накопленных знаний об исследуемом объекте и степень развития математического аппарата. На современном этапе научных исследований выработалась следующая цепочка: явление физическая модель математическая модель. Физическая постановка (модель) задачи состоит в следующем: выявляются условия развития процесса и главные факторы на него влияющие. Математическая постановка (модель) заключается в описании выбранных в физической постановке факторов и условий в виде системы уравнений (алгебраических, дифференциальных, интегральных и др.). Задача называется корректно поставленной, если в определенном функциональном пространстве решение задачи существует, единственно и непрерывно зависит от начальных и граничных условий. Математическая модель не бывает тождественна рассматриваемому объекту, а является его приближенным описанием Вывод уравнения свободных малых поперечных колебаний струны Будем следовать учебнику . Пусть концы струны закреплены, а сама струна туго натянута. Если вывести струну из положения равновесия (например, оттянуть или ударить по ней), то струна начнет 57

58 колебаться. Будем предполагать, что все точки струны движутся перпендикулярно ее положению равновесия (поперечные колебания), причем в каждый момент времени струна лежит в одной и той же плоскости. Возьмем в этой плоскости систему прямоугольных координат xou. Тогда, если в начальный момент времени t = струна располагалась вдоль оси Ox, то u будет означать отклонение струны от положения равновесия, то есть, положению точки струны с абсциссой x в произвольный момент времени t соответствует значение функции u(x, t). При каждом фиксированном значении t график функции u(x, t) представляет форму колеблющейся струны в момент времени t (рис. 32). При постоянном значении x функция u(x, t) дает закон движения точки с абсциссой x вдоль прямой, параллельной оси Ou, производная u t скорость этого движения, а вторая производная 2 u t 2 ускорение. Рис. 32. Силы, приложенные к бесконечно малому участку струны Составим уравнение, которому должна удовлетворять функция u(x, t). Для этого сделаем еще несколько упрощающих предположений. Будем считать струну абсолютно гиб- 58

59 кой, то есть будем считать, что струна не сопротивляется изгибу; это означает, что напряжения, возникающие в струне, всегда направлены по касательным к ее мгновенному профилю. Струна предполагается упругой и подчиняющейся закону Гука; это означает, что изменение величины силы натяжения пропорционально изменению длины струны. Примем, что струна однородна; это означает, что ее линейная плотность ρ постоянна. Внешними силами мы пренебрегаем. Это и означает, что мы рассматриваем свободные колебания. Мы будем изучать только малые колебания струны. Если обозначить через ϕ(x, t) угол между осью абсцисс и касательной к струне в точке с абсциссой x в момент времени t, то условие малости колебаний заключается в том, что величиной ϕ 2 (x, t) можно пренебрегать по сравнению с ϕ(x, t), т. е. ϕ 2. Так как угол ϕ мал, то cosϕ 1, ϕ sin ϕ tg ϕ u следовательно, величиной (u x x,) 2 также можно пренебрегать. Отсюда сразу следует, что в процессе колебания можем пренебречь изменением длины любого участка струны. Действительно, длина кусочка струны M 1 M 2, проектирующаяся в промежуток оси абсцисс, где x 2 = x 1 + x, равна l = x 2 x () 2 u dx x. x Покажем, что при наших предположениях величина силы натяжения T будет постоянной вдоль всей струны. Возьмем для этого какой либо участок струны M 1 M 2 (рис. 32) в момент времени t и заменим действие отброшенных участ- 59

60 ков силами натяжений T 1 и T 2. Так как по условию все точки струны движутся параллельно оси Ou и внешние силы отсутствуют, то сумма проекций сил натяжения на ось Ox должна равняться нулю: T 1 cosϕ(x 1, t) + T 2 cosϕ(x 2, t) =. Отсюда в силу малости углов ϕ 1 = ϕ(x 1, t) и ϕ 2 = ϕ(x 2, t) заключаем, что T 1 = T 2. Обозначим общее значение T 1 = T 2 через T. Теперь вычислим сумму проекций F u этих же сил на ось Ou: F u = T sin ϕ(x 2, t) T sin ϕ(x 1, t). (2) Так как для малых углов sin ϕ(x, t) tg ϕ(x, t), а tg ϕ(x, t) u(x, t)/ x, то уравнение (2) можно переписать так F u T (tg ϕ(x 2, t) tg ϕ(x 1, t)) (u T x (x 2, t) u) x (x 1, t) x x T 2 u x 2(x 1, t) x. Так как точка x 1 выбрана произвольно, то F u T 2 u x2(x, t) x. После того как найдены все силы, действующие на участок M 1 M 2, применим к нему второй закон Ньютона, согласно которому произведение массы на ускорение равно сумме всех действующих сил. Масса кусочка струны M 1 M 2 равна m = ρ l ρ x, а ускорение равно 2 u(x, t). Уравнение t 2 Ньютона принимает вид: 2 u t (x, t) x = u 2 α2 2 x2(x, t) x, где α 2 = T ρ постоянное положительное число. 6

61 Сокращая на x, получим 2 u t (x, t) = u 2 α2 2 x2(x, t). (21) В результате мы получили линейное однородное дифференциальное уравнение с частными производными второго порядка с постоянными коэффициентами. Его называют уравнением колебаний струны или одномерным волновым уравнением. Уравнение (21) по сути является переформулировкой закона Ньютона и описывает движение струны. Но в физической постановке задачи присутствовали требования о том, что концы струны закреплены и положение струны в какойто момент времени известно. Уравнениями эти условия будем записывать так: а) будем считать, что концы струны закреплены в точках x = и x = l, т. е. будем считать, что для всех t выполнены соотношения u(, t) =, u(l, t) = ; (22) б) будем считать, что в момент времени t = положение струны совпадает с графиком функции f(x), т. е. будем считать, что для всех x [, l] выполнено равенство u(x,) = f(x); (23) в) будем считать, что в момент времени t = точке струны с абсциссой x придана скорость g(x), т. е. будем считать, что u (x,) = g(x). (24) t Соотношения (22) называются граничными условиями, а соотношения (23) и (24) называются начальными условиями. Математическая модель свободных малых поперечных 61

62 колебаний струны заключается в том, что надо решить уравнение (21) с граничными условиями (22) и начальными условиями (23) и (24) Решение уравнения свободных малых поперечных колебаний струны методом Фурье Решения уравнения (21) в области x l, < t <, удовлетворяющие граничным условиям (22) и начальным условиям (23) и (24), будем искать методом Фурье (называемым также методом разделения переменных). Метод Фурье состоит в том, что частные решения ищутся в виде произведения двух функций, одна из которых зависит только от x, а другая только от t. То есть мы ищем решения уравнения (21), которые имеют специальный вид: u(x, t) = X(x)T(t), (25) где X дважды непрерывно дифференцируемая функция от x на [, l], а T дважды непрерывно дифференцируемая функция от t, t >. Подставляя (25) в (21), получим: X T = α 2 X T, (26) или T (t) α 2 T(t) = X (x) X(x). (27) Говорят, что произошло разделение переменных. Так как x и t не зависят друг от друга, то левая часть в (27) не зависит от x, а правая от t и общая величина этих отношений 62

63 должна быть постоянной, которую обозначим через λ: T (t) α 2 T(t) = X (x) X(x) = λ. Отсюда получаем два обыкновенных дифференциальных уравнения: X (x) λx(x) =, (28) T (t) α 2 λt(t) =. (29) При этом граничные условия (22) примут вид X()T(t) = и X(l)T(t) =. Поскольку они должны выполняться для всех t, t >, то X() = X(l) =. (3) Найдем решения уравнения (28), удовлетворяющего граничным условиям (3). Рассмотрим три случая. Случай 1: λ >. Обозначим λ = β 2. Уравнение (28) принимает вид X (x) β 2 X(x) =. Его характеристическое уравнение k 2 β 2 = имеет корни k = ±β. Следовательно, общее решение уравнения (28) имеет вид X(x) = C e βx + De βx. Мы должны подобрать постоянные C и D так, чтобы соблюдались граничные условия (3), т. е. X() = C + D =, X(l) = C e βl + De βl =. Поскольку β, то эта система уравнений имеет единственное решение C = D =. Следовательно, X(x) и 63

64 u(x, t). Тем самым, в случае 1 мы получили тривиальное решение, которое далее рассматривать не будем. Случай 2: λ =. Тогда уравнение (28) принимает вид X (x) = и его решение, очевидно, задается формулой: X(x) = C x+d. Подставляя это решение в граничные условия (3), получим X() = D = и X(l) = Cl =, значит, C = D =. Следовательно, X(x) и u(x, t), и мы опять получили тривиальное решение. Случай 3: λ <. Обозначим λ = β 2. Уравнение (28) принимает вид: X (x)+β 2 X(x) =. Его характеристическое уравнение имеет вид k 2 + β 2 =, а k = ±βi являются его корнями. Следовательно, общее решение уравнения (28) в этом случае имеет вид X(x) = C sin βx + D cosβx. В силу граничных условий (3) имеем X() = D =, X(l) = C sin βl =. Поскольку мы ищем нетривиальные решения (т. е. такие, когда C и D не равны нулю одновременно), то из последнего равенства находим sin βl =, т. е. βl = nπ, n = ±1, ±2,..., n не равно нулю, так как сейчас мы рассматриваем случай 3, в котором β. Итак, если β = nπ (nπ) 2, l, т. е. λ = то существуют l решения X n (x) = C n sin πnx, (31) l C n произвольные постоянные, уравнения (28), не равные тождественно нулю. 64

65 В дальнейшем будем придавать n только положительные значения n = 1, 2,..., поскольку при отрицательных n будут получаться решения того (же вида. nπ) Величины λ n = называются собственными числами, а функции X n (x) = C n sin πnx собственными функ- l l циями дифференциального уравнения (28) с краевыми условиями (3). Теперь решим уравнение (29). Для него характеристическое уравнение имеет вид k 2 α 2 λ =. (32) l 2 Поскольку выше мы выяснили, что нетривиальные решения X(x) уравнения (28) имеются только для отрицательных λ, равных λ = n2 π 2, то именно такие λ мы и будем рассматривать далее. Корнями уравнения (32) являются k = ±iα λ, а решения уравнения (29) имеют вид: T n (t) = A n sin πnαt + B n cos πnαt, (33) l l где A n и B n произвольные постоянные. Подставляя формулы (31) и (33) в (25), найдем частные решения уравнения (21), удовлетворяющие краевым условиям (22): (u n (x, t) = B n cos πnαt + A n sin πnαt) C n sin πnx. l l l Внося множитель C n в скобку и вводя обозначения C n A n = b n и B n C n = a n, запишем u n (X, T) в виде (u n (x, t) = a n cos πnαt + b n sin πnαt) sin πnx. (34) l l l 65

66 Колебания струны, соответствующие решениям u n (x, t), называются собственными колебаниями струны. Так как уравнение (21) и граничные условия (22) линейны и однородны, то линейная комбинация решений (34) (u(x, t) = a n cos πnαt + b n sin πnαt) sin πnx (35) l l l будет решением уравнения (21), удовлетворяющим граничным условиям (22) при специальном выборе коэффициентов a n и b n, обеспечивающем равномерную сходимость ряда. Теперь подберем коэффициенты a n и b n решения (35) так, чтобы оно удовлетворяло не только граничным, но и начальным условиям (23) и (24), где f(x), g(x) заданные функции (причем f() = f(l) = g() = g(l) =). Считаем, что функции f(x) и g(x) удовлетворяют условиям разложения в ряд Фурье. Подставляя в (35) значение t =, получим u(x,) = a n sin πnx l = f(x). Дифференцируя ряд (35) по t и подставляя t =, получим u t (x,) = πnα b n sin πnx l l = g(x), а это есть разложение функций f(x) и g(x) в ряды Фурье. Следовательно, a n = 2 l l f(x) sin πnx l dx, b n = 2 l g(x) sin πnx dx. πnα l (36) 66

67 Подставляявыражениядлякоэффициентов a n и b n в ряд (35), мы получим решение уравнения (21), удовлетворяющее граничным условиям (22) и начальным условиям (23) и (24). Тем самым мы решили задачу о свободных малых поперечных колебаниях струны. Выясним физический смысл собственных функций u n (x, t) задачи о свободных колебаниях струны, определенных формулой (34). Перепишем ее в виде где u n (x, t) = α n cos πnα l α n = a 2 n + b2 n, (t + δ n) sin πnx, (37) l πnα δ n = arctg b n. l a n Из формулы (37) видно, что все точки струны совершают гармонические колебания с одной и той же частотой ω n = πnα и фазой πnα δ n. Амплитуда колебания зависит от l l абсциссы x точки струны и равна α n sin πnx. При таком колебании все точки струны одновременно достигают своего l максимального отклонения в ту или иную сторону и одновременно проходят положение равновесия. Такие колебания называются стоячими волнами. Стоячая волна будет иметь n + 1 неподвижную точку, задаваемую корнями уравнения sin πnx = в промежутке [, l]. Неподвижные точки называются узлами стоячей волны. Посередине между узла- l ми располагаются точки, в которых отклонения достигают максимума; такие точки называются пучностями. Каждая струна может иметь собственные колебания строго определенных частот ω n = πnα, n = 1, 2,.... Эти частоты называются собственными частотами струны. Самый низкий l тон, который может издавать струна, определяется самой 67

68 низкой собственной частотой ω 1 = π T и называется основным тоном струны. Остальные тона, соответствующие l ρ частотам ω n, n = 2, 3,..., называются обертонами или гармониками. Для наглядности изобразим типичные профили струны, издающей основной тон (рис. 33), первый обертон (рис. 34) и второй обертон (рис. 35). Рис. 33. Профиль струны, издающей основной тон Рис. 34. Профиль струны, издающей первый обертон Рис. 35. Профиль струны, издающей второй обертон Если струна совершает свободные колебания, определяемые начальными условиями, то функция u(x, t) представляется, как это видно из формулы (35), в виде суммы отдельных гармоник. Таким образом произвольное колебание 68

69 струны представляет собой суперпозицию стоячих волн. При этом характер звучания струны (тон, сила звука, тембр) будет зависеть от соотношения между амплитудами отдельных гармоник Сила, высота и тембр звука Колеблющаяся струна возбуждает колебания воздуха, воспринимаемые ухом человека как звук, издаваемый струной. Сила звука характеризуется энергией или амплитудой колебаний: чем больше энергия, тем больше сила звука. Высота звука определяется его частотой или периодом колебаний: чем больше частота, тем выше звук. Тембр звука определяется наличием обертонов, распределением энергии по гармоникам, т. е. способом возбуждения колебаний. Амплитуды обертонов, вообще говоря, меньше амплитуды основного тона, а фазы обертонов могут быть произвольными. Наше ухо не чувствительно к фазе колебаний. Сравните, например, две кривые на рис. 36, заимствованном из . Это запись звука с одним и тем же основным тоном, извлеченного из кларнета (а) и рояля (б). Оба звука не представляют собой простых синусоидальных колебаний. Основная частота звука в обоих случаях одинакова это и создает одинаковость тона. Но рисунки кривых разные потому, что на основной тон наложены разные обертона. В каком-то смысле эти рисунки показывают, что такое тембр. 69


Уравнения гиперболического типа. Колебания бесконечной и полубесконечной струны. Метод Фурье Метод Фурье Стоячие волны 4 Лекция 4.1 Уравнения гиперболического типа. Колебания бесконечной и полубесконечной

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования МАТИ Российский государственный технологический университет имени К. Э. Циолковского

Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной. Основные

Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Тема Ряды Фурье Практическое занятие Ряды Фурье по ортогональным системам функций Пространство кусочно-непрерывных функций Обобщенный ряд Фурье 3 Неравенство Бесселя и сходимость ряда Фурье Пространство

ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

ОГЛАВЛЕНИЕ РЯДЫ ФУРЬЕ 4 Понятие о периодической функции 4 Тригонометрический полином 6 3 Ортогональные системы функций 4 Тригонометрический ряд Фурье 3 5 Ряд Фурье для четных и нечетных функций 6 6 Разложение

Федеральное агентство по образованию Московский Государственный университет геодезии и картографии (МИИГАиК) МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ по курсу ВЫСШАЯ МАТЕМАТИКА Числовые

Лекция 4. Гармонический анализ. Ряды Фурье Периодические функции. Гармонический анализ В науке и технике часто приходится иметь дело с периодическими явлениями, т. е. такими, которые повторяются через

ТЕМА V РЯД ФУРЬЕ ЛЕКЦИЯ 6 Разложение периодической функции в ряд Фурье Многие процессы происходящие в природе и технике обладают свойствами повторяться через определенные промежутки времени Такие процессы

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

6 Ряды Фурье 6 Ортогональные системы функций Ряд Фурье по ортогональной системе функций Функции ϕ () и ψ (), определенные и интегрируемые на отрезке [, ], называются ортогональными на этом отрезке, если

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида (a + a) + a () + K + a () + K a) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра высшей математики Учебно-методическое пособие для студентов факультета прикладной математики и информатики

Рассмотрим некоторые примеры. Пример. Найдём сумму бесконечной геометрической прогрессии Формула общего члена этого ряда a+aq+...+aq n +... (a). a n = aq n. Вычислим его частичные суммы. Если q =, то

Задача 1.1. Найти в указанной области отличные от тождественного нуля решения y = y(x) дифференциального уравнения, удовлетворяющие заданным краевым условиям (задача Штурма-Лиувилля) Решение: Рассмотрим

Математический анализ Тема: Определенный интеграл Несобственные интегралы Лектор Пахомова Е.Г. 2017 г. ГЛАВА II. Определенный интеграл и его приложения 1. Определенный интеграл и его свойства 1. Задачи,

Лекция 8 4 Задача Штурма-Лиувилля Рассмотрим начально-краевую задачу для дифференциального уравнения в частных производных второго порядка описывающего малые поперечные колебания струны Струна рассматривается

Пояснения к тексту: знак читается как "равносильно" и обозначает, что у уравнений справа от знака и слева от знака множество решений совпадает, знак IR обозначает ммножество вещественных чисел, знак IN

82 4. Раздел 4. Функциональные и степенные ряды 4.2. Занятие 3 4.2. Занятие 3 4.2.. Разложение функции в ряд Тейлора ОПРЕДЕЛЕНИЕ 4.2.. Пусть функция y = f(x) бесконечно дифференцируема в некоторой окрестности

МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» К а ф е д р а Прикладной математики

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Высшая и прикладная математика» Н. П. Чуев Элементы гармонического анализа Методические

Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Интегрируемость функции (по Риману) и определенный интеграл Примеры решения задач 1. Постоянная функция f(x) = C интегрируема на , так как для любых разбиений и любого выбора точек ξ i интегральные

I курс, задача. Докажите, что функция Римана, если 0, m m R(), если, m, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

1 2 Оглавление 1 Ряды Фурье 5 1.1 Тригонометрический ряд Фурье............ 5 1.2 Только sin & cos..................... 7 1.3 Ряд Фурье в комплексной форме........... 11 1.4 f(x) = c k?.......................

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ 1. Дифференциальные уравнения с частными производными Уравнение, связывающее неизвестную функцию u (x 1, x 2,..., x n), независимые переменные x 1, x 2,..., x n и частные

Лекция 4. Волновые уравнения 1. Вывод уравнения колебаний струны 2. Уравнение продольных колебаний стержня 3. Начальные условия, краевые условия 4. Постановка задач 1. Вывод уравнения колебаний струны

1. Электростатика 1 1. Электростатика Урок 6 Разделение переменных в декартовых координатах 1.1. (Задача 1.49) Плоскость z = заряжена с плотностью σ (x, y) = σ sin (αx) sin (βy), где σ, α, β постоянные.

Модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Уравнениям параболического типа. Метод разделения переменных Однородная краевая задача Функция источника Неоднородное уравнение теплопроводности 7 Лекция 7.1 Уравнениям параболического типа. Метод разделения

Лекция Числовые ряды Признаки сходимости Числовые ряды Признаки сходимости Бесконечное выражение числовой последовательности + + + +, составленное из членов бесконечной, называется числовым рядом Числа,

35 7 Тригонометрические ряды Фурье Ряды Фурье для периодических функций с периодом T. Пусть f(x) - кусочно - непрерывная периодическая функция с периодом T. Рассмотрим основную тригонометрическую систему

Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

9. Первообразная и неопределенный интеграл 9.. Пусть на промежутке I R задана функция f(). Функцию F () называют первообразной функции f() на промежутке I, если F () = f() для любого I, и первообразной

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл Задачи, приводящие к понятию производной Определение Касательной S к линии y f (x) в точке A x ; f (

Уравнения гиперболического типа. Колебания бесконечной и полубесконечной струны. Метод Даламбера Бесконечная струна. Формула Даламбера Полубесконечная струна 3 Лекция 3.1 Уравнения гиперболического типа.

Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

РЯДЫ. Числовые ряды. Основные определения Пусть дана бесконечная последовательность чисел Выражение (бесконечная сумма) a, a 2,..., a n,... a i = a + a 2 + + a n +... () i= называется числовым рядом. Числа

8. Степенные ряды 8.. Функциональный ряд вида c n (z) n, (8.) n= где c n числовая последовательность, R фиксированное число, а z R, называют степенным рядом с коэффициентами c n. Выполнив замену переменных

~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

3724 РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 1 РАБОЧАЯ ПРОГРАММА РАЗДЕЛОВ «РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ» 11 Числовые ряды Понятие числового ряда Свойства числовых рядов Необходимый признак сходимости

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ НОВОСИБИРСК 200 2 МИНОБРНАУКИ РОССИИ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» Е.М. Рудой МАТЕМАТИЧЕСКИЙ АНАЛИЗ.

ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

КВАДРАТНЫЕ УРАВНЕНИЯ Оглавление КВАДРАТНЫЕ УРАВНЕНИЯ... 4. и исследование квадратных уравнений... 4.. Квадратное уравнение с числовыми коэффициентами... 4.. Решить и исследовать квадратные уравнения относительно

РАЗДЕЛ ЗАДАЧИ С ПАРАМЕТРАМИ Комментарий Задачи с параметрами традиционно являются сложными заданиями в структуре ЕГЭ, требующими от абитуриента не только владения всеми методами и приемам решения различных

Дифференциальное исчисление Введение в математический анализ Предел последовательности и функции. Раскрытие неопределенностей в пределах. Производная функции. Правила дифференцирования. Применение производной

Ряды Фурье Ортогональные системы функций С точки зрения алгебры равенство где - функции данного класса а - коэффициенты из R или C попросту означает что вектор является линейной комбинацией векторов В

1. Определенный интеграл 1.1. Пусть f ограниченная функция, заданная на отрезке [, b] R. Разбиением отрезка [, b] называют такой набор точек τ = {x, x 1,..., x n 1, x n } [, b], что = x < x 1 < < x n 1

Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a(a) a(a) a(a) (), где

Ряды Фурье - это представление произвольно взятой функции с конкретным периодом в виде ряда. В общем виде данное решение называют разложением элемента по ортогональному базису. Разложение функций в ряд Фурье является довольно мощным инструментарием при решении разнообразных задач благодаря свойствам данного преобразования при интегрировании, дифференцировании, а также сдвиге выражения по аргументу и свертке.

Человек, не знакомый с высшей математикой, а также с трудами французского ученого Фурье, скорее всего, не поймет, что это за «ряды» и для чего они нужны. А между тем данное преобразование довольно плотно вошло в нашу жизнь. Им пользуются не только математики, но и физики, химики, медики, астрономы, сейсмологи, океанографы и многие другие. Давайте и мы поближе познакомимся с трудами великого французского ученого, сделавшего открытие, опередившее свое время.

Человек и преобразование Фурье

Ряды Фурье являются одним из методов (наряду с анализом и другими) Данный процесс происходит каждый раз, когда человек слышит какой-либо звук. Наше ухо в автоматическом режиме производит преобразование элементарных частиц в упругой среде раскладываются в ряды (по спектру) последовательных значений уровня громкости для тонов разной высоты. Далее мозг превращает эти данные в привычные для нас звуки. Все это происходит помимо нашего желания или сознания, само по себе, а вот для того чтобы понять эти процессы, понадобится несколько лет изучать высшую математику.

Подробнее о преобразовании Фурье

Преобразование Фурье можно проводить аналитическими, числительными и другими методами. Ряды Фурье относятся к числительному способу разложения любых колебательных процессов - от океанских приливов и световых волн до циклов солнечной (и других астрономических объектов) активности. Используя эти математические приемы, можно разбирать функции, представляя любые колебательные процессы в качестве ряда синусоидальных составляющих, которые переходят от минимума к максимуму и обратно. Преобразование Фурье является функцией, описывающей фазу и амплитуду синусоид, соответствующих определенной частоте. Данный процесс можно использовать для решения весьма сложных уравнений, которые описывают динамические процессы, возникающие под действием тепловой, световой или электрической энергии. Также ряды Фурье позволяют выделять постоянные составляющие в сложных колебательных сигналах, благодаря чему стало возможным правильно интерпретировать полученные экспериментальные наблюдения в медицине, химии и астрономии.

Историческая справка

Отцом-основателем этой теории является французский математик Жан Батист Жозеф Фурье. Его именем впоследствии и было названо данное преобразование. Изначально ученый применил свой метод для изучения и объяснения механизмов теплопроводности - распространения тепла в твердых телах. Фурье предположил, что изначальное нерегулярное распределение можно разложить на простейшие синусоиды, каждая из которых будет иметь свой температурный минимум и максимум, а также свою фазу. При этом каждая такая компонента будет измеряться от минимума к максимуму и обратно. Математическая функция, которая описывает верхние и нижние пики кривой, а также фазу каждой из гармоник, назвали преобразованием Фурье от выражения распределения температуры. Автор теории свел общую функцию распределения, которая трудно поддается математическому описанию, к весьма удобному в обращении ряду косинуса и синуса, в сумме дающих исходное распределение.

Принцип преобразования и взгляды современников

Современники ученого - ведущие математики начала девятнадцатого века - не приняли данную теорию. Основным возражением послужило утверждение Фурье о том, что разрывную функцию, описывающую прямую линию или разрывающуюся кривую, можно представить в виде суммы синусоидальных выражений, которые являются непрерывными. В качестве примера можно рассмотреть «ступеньку» Хевисайда: ее значение равно нулю слева от разрыва и единице справа. Данная функция описывает зависимость электрического тока от временной переменной при замыкании цепи. Современники теории на тот момент никогда не сталкивались с подобной ситуацией, когда разрывное выражение описывалось бы комбинацией непрерывных, обычных функций, таких как экспонента, синусоида, линейная или квадратичная.

Что смущало французских математиков в теории Фурье?

Ведь если математик был в прав в своих утверждениях, то, суммируя бесконечный тригонометрический ряд Фурье, можно получить точное представление ступенчатого выражения даже в том случае, если оно имеет множество подобных ступеней. В начале девятнадцатого века подобное утверждение казалось абсурдным. Но несмотря на все сомнения, многие математики расширили сферу изучения данного феномена, выведя его за пределы исследований теплопроводности. Однако большинство ученых продолжали мучиться вопросом: "Может ли сумма синусоидального ряда сходиться к точному значению разрывной функции?"

Сходимость рядов Фурье: пример

Вопрос о сходимости поднимается всякий раз при необходимости суммирования бесконечных рядов чисел. Для понимания данного феномена рассмотрим классический пример. Сможете ли вы когда-либо достигнуть стены, если каждый последующий шаг будет вдвое меньше предыдущего? Предположим, что вы находитесь в двух метрах от цели, первый же шаг приближает к отметке на половине пути, следующий - к отметке в три четверти, а после пятого вы преодолеете почти 97 процентов пути. Однако сколько бы вы шагов ни сделали, намеченной цели вы не достигните в строгом математическом смысле. Используя числовые расчеты, можно доказать, что в конце концов можно приблизиться на сколь угодно малое заданное расстояние. Данное доказательство является эквивалентным демонстрации того, что суммарное значение одной второй, одной четвертой и т. д. будет стремиться к единице.

Вопрос сходимости: второе пришествие, или Прибор лорда Кельвина

Повторно данный вопрос поднялся в конце девятнадцатого века, когда ряды Фурье попробовали применить для предсказания интенсивности отливов и приливов. В это время лордом Кельвином был изобретен прибор, представляющий собой аналоговое вычислительное устройство, которое позволяло морякам военного и торгового флота отслеживать это природное явление. Данный механизм определял наборы фаз и амплитуд по таблице высоты приливов и соответствующих им временных моментов, тщательно замеренных в данной гавани в течение года. Каждый параметр представлял собой синусоидальную компоненту выражения высоты прилива и являлся одной из регулярных составляющих. Результаты измерений вводились в вычислительный прибор лорда Кельвина, синтезирующий кривую, которая предсказывала высоту воды как временную функцию на следующий год. Очень скоро подобные кривые были составлены для всех гаваней мира.

А если процесс будет нарушен разрывной функцией?

В то время представлялось очевидным, что прибор, предсказывающий приливную волну, с большим количеством элементов счета может вычислить большое количество фаз и амплитуд и так обеспечить более точные предсказания. Тем не менее оказалось, что данная закономерность не соблюдается в тех случаях, когда приливное выражение, которое следует синтезировать, содержало резкий скачок, то есть являлось разрывным. В том случае, если в устройство вводятся данные из таблицы временных моментов, то оно производит вычисления нескольких коэффициентов Фурье. Исходная функция восстанавливается благодаря синусоидальным компонентам (в соответствии с найденными коэффициентами). Расхождение между исходным и восстановленным выражением можно измерять в любой точке. При проведении повторных вычислений и сравнений видно, что значение наибольшей ошибки не уменьшается. Однако они локализируются в области, соответствующей точке разрыва, а в любой иной точке стремятся к нулю. В 1899 году этот результат был теоретически подтвержден Джошуа Уиллардом Гиббсом из Йельского университета.

Сходимость рядов Фурье и развитие математики в целом

Анализ Фурье неприменим к выражениям, содержащим бесконечное количество всплесков на определенном интервале. В общем и целом ряды Фурье, если изначальная функция представлена результатом реального физического измерения, всегда сходятся. Вопросы сходимости данного процесса для конкретных классов функций привели к появлению новых разделов в математике, например теории обобщенных функций. Она связана с такими именами, как Л. Шварц, Дж. Микусинский и Дж. Темпл. В рамках данной теории была создана четкая и точная теоретическая основа под такие выражения, как дельта-функция Дирака (она описывает область единой площади, сконцентрированной в бесконечно малой окрестности точки) и «ступень» Хевисайда. Благодаря этой работе ряды Фурье стали применимы для решения уравнений и задач, в которых фигурируют интуитивные понятия: точечный заряд, точечная масса, магнитные диполи, а также сосредоточенная нагрузка на балке.

Метод Фурье

Ряды Фурье, в соответствии с принципами интерференции, начинаются с разложения сложных форм на более простые. Например, изменение теплового потока объясняется его прохождением сквозь различные препятствия из теплоизолирующего материала неправильной формы или изменением поверхности земли - землетрясением, изменением орбиты небесного тела - влиянием планет. Как правило, подобные уравнения, описывающие простые классические системы, элементарно решаются для каждой отдельной волны. Фурье показал, что простые решения также можно суммировать для получения решения более сложных задач. Выражаясь языком математики, ряды Фурье - это методика представления выражения суммой гармоник - косинусоид и синусоид. Поэтому данный анализ известен также под именем «гармонический анализ».

Ряд Фурье - идеальная методика до «компьютерной эпохи»

До создания компьютерной техники методика Фурье являлась лучшим оружием в арсенале ученых при работе с волновой природой нашего мира. Ряд Фурье в комплексной форме позволяет решать не только простые задачи, которые поддаются прямому применению законов механики Ньютона, но и фундаментальные уравнения. Большинство открытий ньютоновской науки девятнадцатого века стали возможны только благодаря методике Фурье.

Ряды Фурье сегодня

С развитием компьютеров преобразования Фурье поднялись на качественно новый уровень. Данная методика прочно закрепилась практически во всех сферах науки и техники. В качестве примера можно привести цифровой аудио- и видеосигнал. Его реализация стала возможной только благодаря теории, разработанной французским математиком в начале девятнадцатого века. Так, ряд Фурье в комплексной форме позволил совершить прорыв в изучении космического пространства. Кроме того, это повлияло на изучение физики полупроводниковых материалов и плазмы, микроволновой акустики, океанографии, радиолокации, сейсмологии.

Тригонометрический ряд Фурье

В математике ряд Фурье является способом представления произвольных сложных функций суммой более простых. В общих случаях количество таких выражений может быть бесконечным. При этом чем больше их число учитывается при расчете, тем точнее получается конечный результат. Чаще всего в качестве простейших используют тригонометрические функции косинуса или синуса. В таком случае ряды Фурье называют тригонометрическими, а решение таких выражений - разложением гармоники. Этот метод играет важную роль в математике. Прежде всего, тригонометрический ряд дает средства для изображения, а также изучения функций, он является основным аппаратом теории. Кроме того, он позволяет решать ряд задач математической физики. Наконец, данная теория способствовала развитию вызвала к жизни целый ряд весьма важных разделов математической науки (теорию интегралов, теорию периодических функций). Кроме того, послужила отправным пунктом для развития следующих функций действительного переменного, а также положила начало гармоническому анализу.

Функция , определённая при всех значениях x называется периодической , если существует такое число T (T≠ 0) , что при любом значении x выполняется равенство f(x + T) = f(x) . Число T в этом случае является периодом функции.

Свойства периодических функций :

1) Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т.

2) Если функция f(x) имеет период Т ,то функция f(ax) имеет период

В самом деле, для любого аргумента х :

(умножение аргумента на число означает сжатие или растяжение графика этой функции вдоль оси ОХ )

Например, функция имеет период , периодом функции является

3) Если f(x) периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежутку длины Т (при этом предполагается, что эти интегралы существуют).

Ряд Фурье для функции с периодом T= .

Тригонометрическим рядом называется ряд вида:

или, короче,

Где , , , , , … , , , … - действительные числа, называемые коэффициентами ряда.

Каждое слагаемое тригонометрического ряда является периодической функцией периода (т.к. - имеет любой

период, а период () равен , а значит, и ). Каждое слагаемое (), при n= 1,2,3… является аналитическим выражением простого гармонического колебания , где A - амплитуда,

Начальная фаза. Учитывая сказанное, получаем: если тригонометрический ряд сходится на отрезке длины периода , то он сходится на всей числовой оси и его сумма является периодической функцией периода .

Пусть тригонометрический ряд равномерно сходится на отрезке (следовательно, и на любом отрезке) и его сумма равна . Для определения коэффициентов этого ряда воспользуемся следующими равенствами:

А так же воспользуемся следующими свойствами.

1) Как известно, сумма равномерно сходящегося на некотором отрезке ряда, составленного из непрерывных функций, сама является непрерывной функцией на этом отрезке. Учитывая это, получим, что сумма равномерно сходящегося на отрезке тригонометрического ряда - непрерывная функция на всей числовой оси.

2) Равномерная сходимость ряда на отрезке не нарушится, если все члены ряда умножить на функцию , непрерывную на этом отрезке.

В частности, равномерная сходимость на отрезке данного тригонометрического ряда не нарушится, если все члены ряда умножить на или на .

По условию

В результате почленного интегрирования равномерно сходящегося ряда (4.2) и учитывая вышеприведенные равенства (4.1) (ортогональность тригонометрических функций), получим:

Следовательно, коэффициент

Умножая равенство (4.2) на , интегрируя это равенство в пределах от до и, учитывая вышеприведенные выражения (4.1), получим:


Следовательно, коэффициент

Аналогично, умножая равенство (4.2) на и интегрируя его в пределах от до , с учетом равенств (4.1) имеем:

Следовательно, коэффициент

Таким образом, получены следующие выражения для коэффициентов ряда Фурье:

Достаточные признаки разложимости функции в ряд Фурье. Напомним, что точку x o разрыва функции f(x) называют точкой разрыва первого рода, если существуют конечные пределы справа и слева функции f(x) в окрестности точки.

Предел справа,

Предел слева.

Теорема (Дирихле). Если функция f(x) имеет период и на отрезке непрерывна или имеет конечное число точек разрыва первого рода и, кроме того, отрезок можно разбить на конечное число отрезков так, что внутри каждого из них f(x) монотонна, то ряд Фурье для функции f(x) сходится при всех значениях x . Причём в точках непрерывности функции f(x) его сумма равна f(x) , а в точках разрыва функции f(x) его сумма равна , т.е. среднему арифметическому предельных значений слева и справа. Кроме того, ряд Фурье для функции f(x) сходится равномерно на любом отрезке, который вместе со своими концами принадлежит интервалу непрерывности функции f(x) .

Пример : разложить в ряд Фурье функцию

Удовлетворяющую условию .

Решение. Функция f(x) удовлетворяет условиям разложимости в ряд Фурье, поэтому можно записать:

В соответствии с формулами (4.3) , можно получить следующие значения коэффициентов ряда Фурье:

При вычислении коэффициентов ряда Фурье использовалась формула «интегрирования по частям».

И, следовательно,

Ряды Фурье для чётных и нечётных функций с периодом T = .

Используем следующее свойство интеграла по симметричному относительно x=0 промежутку:

Если f(x) - нечётная функция,

если f(x) - чётная функция.

Заметим, что произведение двух чётных или двух нечётных функций - чётная функция, а произведение чётной функции на нечётную функцию - нечётная функция. Пусть теперь f(x) - чётная периодическая функция с периодом , удовлетворяющая условиям разложимости в ряд Фурье. Тогда, используя вышеуказанное свойство интегралов, получим:

Таким образом, ряд Фурье для чётной функции содержит только чётные функции - косинусы и записывается так:

а коэффициенты bn = 0.

Рассуждая аналогично, получаем, что если f(x) - нечётная периодическая функция, удовлетворяющая условиям разложимости в ряд Фурье, то, следовательно, ряд Фурье для функции нечётной содержит только нечётные функции - синусы и записывается следующим образом:

при этом an =0 при n= 0, 1,…

Пример: разложить в ряд Фурье периодическую функцию

Так как заданная нечетная функция f(x) удовлетворяет условиям разложимости в ряд Фурье, то

или, что то же,

И ряд Фурье для данной функции f(x) можнозаписать так:

Ряды Фурье для функций любого периода T=2l .

Пусть f(x) - периодическая функция любого периода T=2l (l- полупериод), кусочно-гладкая или кусочно-монотонная на отрезке [-l, l ]. Полагая x=at, получим функцию f(at) аргумента t, период которой равен . Подберём а так, чтобы период функции f(at) был равен , т.е. T = 2l

Решение. Функция f(x) - нечётная, удовлетворяющая условиям разложимости в ряд Фурье, поэтому на основании формул (4.12) и (4.13) имеем:

(при вычислении интеграла использовали формулу «интегрирования по частям»).