Магнитный момент витка. Определение. Формула. Опыт. Магнитные моменты электронов и атомов Магнитный момент плоского

Можно доказать, что вращающий момент М, действующий на контур с током I в однородном поле, прямо пропорционален площади обтекаемой током, силе тока и индукции магнитного поля В. Кроме того, вращающий момент М зависит от положения контура относительно поля. Максимальный вращающий момент Миакс получается, когда плоскость контура параллельна линиям магнитной индукции (рис. 22.17), и выражается формулой

(Докажите это, используя формулу (22.6а) и рис. 22.17.) Если обозначить то получим

Величину , характеризующую магнитные свойства контура с током, которые определяют его поведение во внешнем магнитном поле, называют магнитным моментом этого контура. Магнитный момент контура измеряется произведением силы тока в нем на площадь, обтекаемую током:

Магнитный момент есть вектор, направление которого определяется правилом правого винта: если винт поворачивать по направлению тока в контуре, то поступательное движение винта покажет направление вектора (рис. 22.18, а). Зависимость вращающего момента М от ориентации контура выражается формулой

где а - угол между векторами и В. Из рис. 22.18, б видно, Что равновесие контура в магнитном поле возможно тогда, когда векторы В и Рмаг направлены по одной прямой. (Подумайте, в каком случае это равновесие будет устойчивым.)

Известно, что магнитное поле оказывает ориентирующее действие на рамку с током, и рамка поворачивается вокруг своей оси. Происходит это потому, что в магнитном поле на рамку действует момент сил, равный:

Здесь В - вектор индукции магнитного поля, - ток в рамке, S - ее площадь и а - угол между силовыми линиями и перпендикуляром к плоскости рамки. В это выражение входит произведение , которое называют магнитным дипольным моментом или просто магнитным моментом рамки Оказывается, величина магнитного момента полностью характеризует взаимодействие рамки с магнитным полем. Две рамки, у одной из которых большой ток и малая площадь, а у другой - большая площадь и малый ток, будут вести себя в магнитном поле одинаково, если их магнитные моменты равны. Если рамка маленькая, то ее взаимодействие с магнитным полем не зависит от ее формы.

Удобно считать магнитный момент вектором, который расположен на линии, перпендикулярной плоскости рамки. Направление вектора (вверх или вниз вдоль этой линии) определяется «правилом буравчика»: буравчик нужно расположить перпендикулярно плоскости рамки и вращать по направлению тока рамки - направление движения буравчика укажет направление вектора магнитного момента.

Таким образом, магнитный момент - это вектор , перпендикулярный плоскости рамки.

Теперь наглядно представим поведение рамки в магнитном поле. Она будет стремиться развернуться так. чтобы ее магнитный момент был направлен вдоль вектора индукции магнитного поля В. Маленькую рамку с током можно использовать в качестве простейшего «измерительного прибора» для определения вектора индукции магнитного поля.

Магнитный момент - важное понятие в физике. В состав атомов входят ядра, вокруг которых вращаются электроны. Каждый движущийся вокруг ядра электрон как заряженная частица создает ток, образуя как бы микроскопическую рамку с током. Вычислим магнитный момент одного электрона, движущегося по круговой орбите радиуса г.

Электрический ток, т. е. величина заряда, которая переносится электроном на орбите за 1 с, равна заряду электрона е, помноженному на число совершаемых им оборотов :

Следовательно, величина магнитного момента электрона равна:

Можно выразить через величину момента импульса электрона . Тогда величина магнитного момента электрона, связанная с его движением по орбите, или, как говорят, величина орбитального магнитного момента, равна:

Атом - это объект, который нельзя описать с помощью классической физики: для таких малых объектов действуют совершенно иные законы - законы квантовой механики. Тем не менее результат, полученный для орбитального магнитного момента электрона, оказывается таким же, как и в квантовой механике.

Иначе дело обстоит с собственным магнитным моментом электрона - спином, который связан с его вращением вокруг своей оси. Для спина электрона квантовая механика дает величину магнитного момента, в 2 раза большую, чем классическая физика:

и это различие между орбитальным и спиновым магнитными моментами невозможно объяснить с классической точки зрения. Полный магнитный момент атома складывается из орбитальных и спиновых магнитных моментов всех электронов, а поскольку они отличаются в 2 раза, то в выражении для магнитного момента атома появляется множитель , характеризующий состояние атома:

Таким образом, атом, как и обычная рамка с током, обладает магнитным моментом, и во многом их поведение сходно. В частности, как и в случае классической рамки, поведение атома в магнитном поле полностью определяется величиной его магнитного момента. В связи с этим понятие магнитного момента очень важно при объяснении различных физических явлений, происходящих с веществом в магнитном поле.

Магнитный момент

основная величина, характеризующая магнитные свойства вещества. Источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки. Элементарным источником магнетизма считают замкнутый ток. Из опыта и классической теории электромагнитного поля следует, что магнитные действия замкнутого тока (контура с током) определены, если известно произведение (М ) силы тока i на площадь контура σ (М = i σ/c в СГС системе единиц (См. СГС система единиц), с - скорость света). Вектор М и есть, по определению, М. м. Его можно записать и в иной форме: М = m l , где m - эквивалентный Магнитный заряд контура, а l - расстояние между «зарядами» противоположных знаков (+ и - ).

М. м. обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. М. м. элементарных частиц (электронов, протонов, нейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента - Спин а. М. м. ядер складываются из собственных (спиновых) М. м. образующих эти ядра протонов и нейтронов, а также М. м., связанных с их орбитальным движением внутри ядра. М. м. электронных оболочек атомов и молекул складываются из спиновых и орбитальных М. м. электронов. Спиновый магнитный момент электрона m сп может иметь две равные и противоположно направленные проекции на направление внешнего магнитного поля Н. Абсолютная величина проекции

где μ в = (9,274096 ±0,000065)·10 -21 эрг/гс - Бора магнетон , h - Планка постоянная , е и m e - заряд и масса электрона, с - скорость света; S H - проекция спинового механического момента на направление поляH . Абсолютная величина спинового М. м.

где s = 1 / 2 - спиновое квантовое число (См. Квантовые числа). Отношение спинового М. м. к механическому моменту (спину)

так как спин

Исследования атомных спектров показали, что m Н сп фактически равно не m в, а m в (1 + 0,0116). Это обусловлено действием на электрон так называемых нулевых колебаний электромагнитного поля (см. Квантовая электродинамика , Радиационные поправки).

Орбитальный М. м. электрона m орб связан с механическим орбитальным моментом орб соотношением g opб = |m орб | / | орб | = |e |/2m e c , то есть Магнитомеханическое отношение g opб в два раза меньше, чем g cп. Квантовая механика допускает лишь дискретный ряд возможных проекций m орб на направление внешнего поля (так называемое Квантование пространственное): m Н орб = m l m в , где m l - магнитное квантовое число, принимающее 2l + 1 значений (0, ±1, ±2,..., ±l , где l - орбитальное квантовое число). В многоэлектронных атомах орбитальный и спиновый М. м. определяются квантовыми числами L и S суммарного орбитального и спинового моментов. Сложение этих моментов проводится по правилам пространственного квантования. В силу неравенства магнитомеханических отношений для спина электрона и его орбитального движения (g cп ¹ g opб) результирующий М. м. оболочки атома не будет параллелен или антипараллелен её результирующему механическому моменту J . Поэтому часто рассматривают слагающую полного М. м. на направление вектора J , равную

где g J - магнитомеханическое отношение электронной оболочки, J - полное угловое квантовое число.

М. м. протона, спин которого равен

где M p - масса протона, которая в 1836,5 раз больше m e , m яд - ядерный магнетон, равный 1/1836,5m в. У нейтрона же М. м. должен был бы отсутствовать, поскольку он лишён заряда. Однако опыт показал, что М. м. протона m p = 2,7927m яд, а нейтрона m n = -1,91315m яд. Это обусловлено наличием мезонных полей около нуклонов, определяющих их специфические ядерные взаимодействия (см. Ядерные силы , Мезоны) и влияющих на их электромагнитные свойства. Суммарные М. м. сложных атомных ядер не являются кратными m яд или m p и m n . Таким образом, М. м. ядра калия

Для характеристики магнитного состояния макроскопических тел вычисляется среднее значение результирующего М. м. всех образующих тело микрочастиц. Отнесённый к единице объёма тела М. м. называется намагниченностью. Для макротел, особенно в случае тел с атомным магнитным упорядочением (ферро-, ферри- и антиферромагнетики), вводят понятие средних атомных М. м. как среднего значения М. м., приходящегося на один атом (ион) - носитель М. м. в теле. В веществах с магнитным порядком эти средние атомные М. м. получаются как частное от деления самопроизвольной намагниченности ферромагнитных тел или магнитных подрешёток в ферри- и антиферромагнетиках (при абсолютном нуле температуры) на число атомов - носителей М. м. в единице объёма. Обычно эти средние атомные М. м. отличаются от М. м. изолированных атомов; их значения в магнетонах Бора m в оказываются дробными (например, в переходных d-металлах Fe, Со и Ni соответственно 2,218 m в, 1,715 m в и 0,604 m в) Это различие обусловлено изменением движения d-электронов (носителей М. м.) в кристалле по сравнению с движением в изолированных атомах. В случае редкоземельных металлов (лантанидов), а также неметаллических ферро- или ферримагнитных соединений (например, ферриты) недостроенные d- или f-слои электронной оболочки (основные атомные носители М. м.) соседних ионов в кристалле перекрываются слабо, поэтому заметной коллективизации этих слоев (как в d-металлах) нет и М. м. таких тел изменяются мало по сравнению с изолированными атомами. Непосредственное опытное определение М. м. на атомах в кристалле стало возможным в результате применения методов магнитной нейтронографии, радиоспектроскопии (ЯМР, ЭПР, ФМР и т.п.) и Мёссбауэра эффекта. Для парамагнетиков также можно ввести понятие среднего атомного М. м., который определяется через найденную на опыте постоянную Кюри, входящую в выражение для Кюри закон а или Кюри - Вейса закон а (см. Парамагнетизм).

Лит.: Тамм И. Е., Основы теории электричества, 8 изд., М., 1966; Ландау Л. Д. и Лифшиц Е. М., Электродинамика сплошных сред, М., 1959; Дорфман Я. Г., Магнитные свойства и строение вещества, М., 1955; Вонсовский С. В., Магнетизм микрочастиц, М., 1973.

С. В. Вонсовский.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Магнитный момент" в других словарях:

    Размерность L2I Единицы измерения СИ А⋅м2 … Википедия

    Основная величина, характеризующая магн. свойства в ва. Источником магнетизма (М. м.), согласно классич. теории эл. магн. явлений, явл. макро и микро(атомные) электрич. токи. Элем. источником магнетизма считают замкнутый ток. Из опыта и классич.… … Физическая энциклопедия

    Большой Энциклопедический словарь

    МАГНИТНЫЙ МОМЕНТ, измерение силы постоянного магнита или токонесущей катушки. Это максимальная поворотная сила (поворотный момент), приложенная к магниту, катушке или электрическому заряду в МАГНИТНОМ ПОЛЕ, деленная на силу поля. Заряженные… … Научно-технический энциклопедический словарь

    МАГНИТНЫЙ МОМЕНТ - физ. величина, характеризующая магнитные свойства тел и частиц вещества (электронов, нуклонов, атомов и т.д.); чем больше магнитный момент, тем сильнее (см.) тела; магнитным моментом определяются магнитное (см.). Поскольку всякий электрический… … Большая политехническая энциклопедия

    - (Magnetic moment) произведение из магнитной массы данного магнита на расстояние между его полюсами. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

    магнитный момент - Хар ка магн. св в тела, усл. выраж. произвед. величины магн. заряда в каждом полюсе на расстояние м ду полюсами. Тематики металлургия в целом EN magnetic moment … Справочник технического переводчика

    Векторная величина, характеризующая вещество как источник магнитного поля. Макроскопический магнитный момент создают замкнутые электрические токи и упорядоченно ориентированные магнитные моменты атомных частиц. У микрочастиц различают орбитальные … Энциклопедический словарь

    МАГНИТНЫЙ МОМЕНТ - – основная величина, характеризующая магнитные свойства вещества. Элементарным источником магнетизма считается электрический ток. Вектор, определяющийся произведением силы тока на площадь контура замкнутого тока, есть магнитный момент. По… … Палеомагнитология, петромагнитология и геология. Словарь-справочник.

    магнитный момент - elektromagnetinis momentas statusas T sritis Standartizacija ir metrologija apibrėžtis Vektorinis dydis, kurio vektorinė sandauga su vienalyčio magnetinio srauto tankiu yra lygi sukimo momentui: m · B = T; čia m – magnetinio momento vektorius, B… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Кикоин А.К. Магнитный момент тока //Квант. - 1986. - № 3. - С. 22-23.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Из курса физики девятого класса («Физика 9», § 88) известно, что на прямолинейный проводник длиной l с током I , если он помещен в однородное магнитное поле с индукцией \(~\vec B\), действует сила \(~\vec F\), равная по модулю

\(~F = BIl \sin \alpha\) ,

где α - угол между направлением тока и вектором магнитной индукции. Направлена эта сила перпендикулярно и полю, и току (по правилу левой руки).

Прямолинейный проводник - это только часть электрической цепи, поскольку электрический ток всегда замкнут. А как магнитное поле действует на замкнутый ток, точнее - на замкнутый контур с током?

На рисунке 1 в качестве примера показан контур в форме прямоугольной рамки со сторонами a и b , по которой в указанном стрелками направлении течет ток I .

Рамка помещена в однородное магнитное поле с индукцией \(~\vec B\) так, что в начальный момент вектор \(~\vec B\) лежит в плоскости рамки и параллелен двум ее сторонам. Рассматривая каждую из сторон рамки по отдельности, мы найдем, что на боковые стороны (длиной а ) действуют силы, равные по модулю F = BIa и направленные в противоположные стороны. На две другие стороны силы не действуют (для них sin α = 0). Каждая из сил F относительно оси, проходящей через середины верхней и нижней сторон рамки, создает момент силы (вращающий момент), равный \(~\frac{BIab}{2}\) (\(~\frac{b}{2}\) - плечо силы). Знаки моментов одинаковы (обе силы поворачивают рамку в одну сторону), так что общий вращающий момент М равен BIab , или, поскольку произведение ab равно площади S рамки,

\(~M = BIab = BIS\) .

Под действием этого момента рамка начнет поворачиваться (если смотреть сверху, то по часовой стрелке) и будет поворачиваться до тех пор, пока не станет своей плоскостью перпендикулярно вектору индукции \(~\vec B\) (рис. 2).

В этом положении сумма сил и сумма моментов сил равны нулю, и рамка находится в состоянии устойчивого равновесия. (На самом деле рамка остановится не сразу - в течение некоторого времени она будет совершать колебания около своего положения равновесия.)

Нетрудно показать (сделайте это самостоятельно), что в любом промежуточном положении, когда нормаль к плоскости контура составляет произвольный угол β с индукцией магнитного поля, вращающий момент равен

\(~M = BIS \sin \beta\) .

Из этого выражения видно, что при данном значении индукции поля и при определенном положении контура с током вращающий момент зависит только от произведения площади контура S на силу тока I в нем. Величину IS и называют магнитным моментом контура с током. Говоря точнее, IS - это модуль вектора магнитного момента. А направлен этот вектор перпендикулярно плоскости контура и притом так, что если мысленно вращать буравчик в направлении тока в контуре, то направление поступательного движения буравчика укажет направление магнитного момента. Например, магнитный момент контура, показанного на рисунках 1 и 2, направлен от нас за плоскость страницы. Измеряется магнитный момент в А·м 2 .

Теперь мы можем сказать, что контур с током в однородном магнитном поле устанавливается так, чтобы его магнитный момент «смотрел» в сторону того поля, которое вызвало его поворот.

Известно, что не только контуры с током обладают свойством создавать собственное магнитное поле и поворачиваться во внешнем поле. Такие же свойства наблюдаются и у намагниченного стержня, например у стрелки компаса.

Еще в 1820 году замечательный французский физик Ампер высказал идею о том, что сходство поведения магнита и контура с током объясняется тем, что в частицах магнита существуют замкнутые токи. Теперь известно, что в атомах и молекулах действительно есть мельчайшие электрические токи, связанные с движением электронов по своим орбитам вокруг ядер. Из-за этого атомы и молекулы многих веществ, например парамагнетиков, обладают магнитными моментами. Поворот этих моментов во внешнем магнитном поле и приводит к намагничиванию парамагнитных веществ.

Выяснилось и другое. Все частицы, входящие в состав атома, обладают также магнитными моментами, вовсе не связанными с какими-либо движениями зарядов, то есть с токами. Для них магнитный момент является таким же «врожденным» качеством, как заряд, масса и т. п. Магнитным моментом обладает даже частица, не имеющая электрического заряда,- нейтрон, составная часть атомных ядер. Магнитным моментом обладают поэтому и атомные ядра.

Таким образом, магнитный момент - одно из самых важных понятий в физике.

При помещении во внешнее поле вещество может реагировать на это поле и само становиться источником магнитного поля (намагничиваться). Такие вещества называют магнетиками (сравните с поведением диэлектриков в электрическом поле). По магнитным свойствам магнетики разделяются на три основные группы: диамагнетики, парамагнетики и ферромагнетики.

Разные вещества намагничиваются по-разному. Магнитные свойства вещества определяются магнитными свойствами электронов и атомов. Большая часть веществ намагничивается слабо - это диамагнетики и парамагнетики. Некоторые вещества в обычных условиях (при умеренных температурах) способны намагничиваться очень сильно - это ферромагнетики.

У многих атомов результирующий магнитный момент равен нулю. Вещества, состоящие из таких атомов, и являются диамагиетиками. К ним, например, относятся азот, вода, медь, серебро, поваренная соль NaCl, диоксид кремния Si0 2 . Вещества же, у которых результирующий магнитный момент атома отличен от нуля, относятся к парамагнетикам. Примерами парамагнетиков являются: кислород, алюминий, платина.

В дальнейшем, говоря о магнитных свойствах, будем иметь в виду в основном диамагнетики и парамагнетики, а свойства небольшой группы ферромагнетиков иногда будем оговаривать особо.

Рассмотрим сначала поведение электронов вещества в магнитном поле. Будем считать для простоты, что электрон вращается в атоме вокруг ядра со скоростью v по орбите радиуса г. Такое движение, которое характеризуется орбитальным моментом импульса, по сути является круговым током, который характеризуется соответственно орбитальным магнитным момен-

том р орб. Исходя из периода обращения по окружности Т = - имеем, что

произвольную точку орбиты электрон в единицу времени пересекает -

раз. Поэтому круговой ток, равный прошедшему через точку в единицу времени заряду, дается выражением

Соответственно, орбитальный магнитный момент электрона по формуле (22.3) равен

Помимо орбитального момента импульса электрон имеет также собственный момент импульса, называемый спином . Спин описывается законами квантовой физики и является неотъемлемым свойством электрона - как масса и заряд (см. подробнее в разделе квантовой физики). Собственному моменту импульса соответствует собственный (спиновый) магнитный момент электрона р сп.

Магнитным моментом обладают и ядра атомов, однако эти моменты в тысячи раз меньше моментов электронов, и ими можно обычно пренебречь. В результате суммарный магнитный момент магнетика Р т равен векторной сумме орбитальных и спиновых магнитных моментов электронов магнетика:

Внешнее магнитное поле действует на ориентацию частиц вещества, имеющих магнитные моменты (и микротоков), в результате чего вещество намагничивается. Характеристикой этого процесса является вектор намагниченности J , равный отношению суммарного магнитного момента частиц магнетика к объему магнетика AV :

Намагниченность измеряется в А/м.

Если магнетик поместить во внешнее магнитное полеВ 0 , то в результате

намагничивания возникнет внутреннее поле микротоков В, так что результирующее поле будет равным

Рассмотрим магнетик в виде цилиндра с основанием площадью S и высотой /, помещенный в однородное внешнее магнитное ноле с индукцией В 0 . Такое поле может быть создано, например, с помощью соленоида. Ориентация микротоков во внешнем ноле становится упорядоченной. При этом поле микротоков диамагнетиков направлено противоположно внешнему нолю, а иоле микротоков парамагнетиков совпадает по направлению с внешним

В любом сечении цилиндра упорядоченность микротоков приводит к следующему эффекту (рис. 23.1). Упорядоченные микротоки внутри магнетика компенсируются соседними микротоками, а вдоль боковой поверхности текут нескомпенсированные поверхностные микротоки.

Направление этих нескомпенсированных микротоков параллельно (или антипараллельно) току, текущему в соленоиде, создающем внешнее ноле. В целом же они Рис. 23.1 дают суммарный внутренний ток Этот поверхностный ток создает внутреннее иоле микротоков B v причем связь тока и поля может быть описана формулой (22.21) для ноля соленоида:

Здесь магнитная проницаемость принята равной единице, поскольку роль среды учтена введением поверхностного тока; плотность намотки витков соленоида соответствует одному на всю длину соленоида /: п = 1 //. При этом магнитный момент поверхностного тока определяется намагниченностью всего магнетика:

Из двух последних формул с учетом определения намагниченности (23.4) следует

или в векторном виде

Тогда из формулы (23.5) имеем

Опыт исследования зависимости намагниченности от напряженности внешнего поля показывает, что обычно поле можно считать несильным и в разложении в ряд Тейлора достаточно ограничиться линейным членом:

где безразмерный коэффициент пропорциональности х - магнитная восприимчивость вещества. С учетом этого имеем

Сравнивая последнюю формулу для магнитной индукции с известной формулой (22.1), получим связь магнитной проницаемости и магнитной восприимчивости:

Отметим, что значения магнитной восприимчивости для диамагнетиков и парамагнетиков малы и составляют обычно по модулю 10 "-10 4 (для диамагнетиков) и 10 -8 - 10 3 (для парамагнетиков). При этом для диамагнетиков х х > 0 и р > 1.