Нормаль к прямой. Решение: Вектор нормальный вектор прямой - Решение. Линейные неравенства в пространстве

В аналитической геометрии часто требуется составить общее уравнение прямой по принадлежащей ей точке и вектору нормали к прямой.

Замечание 1

Нормаль – синоним для слова перпендикуляр.

Общее уравнение прямой на плоскости выглядит как $Ax + By + C = 0$. Подставляя в него различные значениях $A$, $B$ и $C$, в том числе нулевые, можно определить любые прямые.

Можно выразить уравнение прямой и другим способом:

Это уравнение прямой с угловым коэффициентом. В нем геометрический смысл коэффициента $k$ заключается в угле наклона прямой по отношению к оси абсцисс, а независимого члена $b$ - в расстоянии, на которое прямая отстоит от центра координатной плоскости, т.е. точки $O(0; 0)$.

Рисунок 1. Варианты расположения прямых на координатной плоскости. Автор24 - интернет-биржа студенческих работ

Нормальное уравнение прямой можно выразить и в тригонометрическом виде:

$x \cdot \cos{\alpha} + y \cdot \sin{\alpha} - p = 0$

где $\alpha$ - угол между прямой и осью абсцисс, а $p$ - расстояние от начала координат до рассматриваемой прямой.

Возможны четыре варианта зависимости наклона прямой от величины углового коэффициента:

  1. когда угловой коэффициент положителен, направляющий вектор прямой идёт снизу вверх;
  2. когда угловой коэффициент отрицателен, направляющий вектор прямой идёт сверху вниз;
  3. когда угловой коэффициент равен нулю, описываемая им прямая параллельна оси абсцисс;
  4. для прямых, параллельных оси ординат, углового коэффициента не существует, поскольку тангенс 90 градусов является неопределенной (бесконечной) величиной.

Чем больше абсолютное значение углового коэффициента, тем круче наклонен график прямой.

Зная угловой коэффициент, легко составить уравнение графика прямой, если дополнительно известна точка, принадлежащая искомой прямой:

$y - y_0 = k \cdot (x - x_0)$

Таким образом, геометрически прямую на координатной всегда можно выразить с помощью угла и расстояния от начала координат. В этом и заключается смысл нормального вектора к прямой - самого компактного способа записи ее положения, если известны координаты хотя бы одной точки, принадлежащей этой прямой.

Определение 1

Вектором нормали к прямой, иначе говоря, нормальным вектором прямой, принято называть ненулевой вектор, перпендикулярный рассматриваемой прямой.

Для каждой прямой можно найти бесконечное множество нормальных векторов, равно как и направляющих векторов, т.е. таких, которые параллельны этой прямой. При этом все нормальные векторы к ней будут коллинеарными, хотя и не обязательно сонаправлены.

Обозначив нормальный вектор прямой как $\vec{n}(n_1; n_2)$, а координаты точки как $x_0$ и $y_0$, можно представить общее уравнение прямой на плоскости по точке и вектору нормали к прямой как

$n_1 \cdot (x - x_n) + n_2 \cdot (y - y_0) = 0$

Таким образом, координаты вектора нормали к прямой пропорциональны числам $A$ и $B$, присутствующим в общем уравнении прямой на плоскости. Следовательно, если известно общее уравнение прямой на плоскости, то можно легко вывести и вектор нормали к прямой. Если прямая, задана уравнением в прямоугольной системе координат

$Ax + By + C = 0$,

то нормальный вектор описывается формулой:

$\bar{n}(A; B)$.

При этом говорят, что координаты нормального вектора "снимаются" с уравнения прямой.

Нормальный к прямой вектор и ее направляющий вектор всегда ортогональны по отношению друг к другу, т.е. их скалярные произведения равны нулю, в чем легко убедиться, вспомнив формулу направляющего вектора $\bar{p}(-B; A)$, а также общее уравнение прямой по направляющему вектору $\bar{p}(p_1; p_2)$ и точке $M_0(x_0; y_0)$:

$\frac{x - x_0}{p_1} = \frac{y - y_0}{p_2}$

В том, что вектор нормали к прямой всегда ортогонален направляющему вектору к ней можно убедиться с помощью скалярного произведения:

$\bar{p} \cdot \bar{n} = -B \cdot A + A \cdot B = 0 \implies \bar{p} \perp \bar{n}$

Всегда можно составить уравнение прямой, зная координаты принадлежащей ей точки и нормального вектора, поскольку направление прямой следует из его направления. Описав точку как $M(x_0; y_0)$, а вектор как $\bar{n}(A; B)$, можно выразить уравнение прямой в следующем виде:

$A(x - x_0) + B(y - y_0) = 0$

Пример 1

Составить уравнение прямой по точке $M(-1; -3)$ и нормальному вектору $\bar(3; -1)$. Вывести уравнение направляющего вектора.

Для решения задействуем формулу $A \cdot (x - x_0) + B \cdot (y - y_0) = 0$

Подставив значения, получаем:

$3 \cdot (x - (-1)) - (-1) \cdot (y - (-3)) = 0$ $3 \cdot (x + 1) - (y + 3) = 0$ $3x + 3 - y - 3 = 0$ $3x - y = 0$

Проверить правильность общего уравнения прямой можно "сняв" из него координаты для нормального вектора:

$3x - y = 0 \implies A = 3; B = -1 \implies \bar{n}(A; B) = \bar{n}(3; -1),$

Что соответствует числам исходных данных.

Подставив реальные значения, проверим, удовлетворяет ли точка $M(-1; -3)$ уравнению $3x - y = 0$:

$3 \cdot (-1) - (-3) = 0$

Равенство верно. Осталось лишь найти формулу направляющего вектора:

$\bar{p}(-B; A) \implies \bar{p}(1; 3)$

Ответ: $3x - y = 0; \bar{p}(1; 3).$

Существует ряд заданий, которым для решения необходимо нормальный вектор на плоскости, чем саму плоскость. Поэтому в этой статье получим ответ на вопрос определения нормального вектора с примерами и наглядными рисунками. Определим векторы трехмерного пространства и плоскости по уравнениям.

Чтобы материал легко усваивался, необходимо предварительно изучить теорию о прямой в пространстве и представление ее на плоскости и векторы.

Определение 1

Нормальным вектором плоскости считается любой ненулевой вектор, который лежит на перпендикулярной к данной плоскости прямой.

Отсюда следует, что имеет место существование большого количества нормальных векторов в данной плоскости. Рассмотрим на рисунке, приведенном ниже.

Нормальные векторы располагаются на параллельных прямых, поэтому они все коллинеарны. То есть, при нормальном векторе n → , расположенном в плоскости γ , вектор t · n → , имея ненулевое значение параметра t , также нормальный вектор плоскости γ . Любой вектор может быть рассмотрен как направляющий вектор прямой, которая перпендикулярна этой плоскости.

Имеются случаи совпадения нормальных векторов плоскостей из-за перпендикулярности одной из параллельных плоскостей, так как прямая перпендикулярна и второй плоскости. Отсюда следует, что нормальные векторы перпендикулярных плоскостей должны быть перпендикулярными.

Рассмотрим на примере нормального вектора на плоскости.

Задана прямоугольная система координат О х у z в трехмерном пространстве. Координатные векторы i → , j → , k → считаются нормальными векторами плоскостей O y z , O x z и O x y . Это суждение верно, так как i → , j → , k → ненулевые и расположены на координатных прямых O x , O y и O z . Эти прямые перпендикулярны координатным плоскостям O y z , O x z и O x y .

Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости из уравнения плоскости

Статья предназначена для того, чтобы научить находить координаты нормального вектора плоскости при известном уравнении плоскости прямоугольной системы координат О х у z . Для определения нормального вектора n → = (A , B , C) в плоскости необходимо наличие общего уравнения плоскости, имеющее вид A x + B y + C z + D = 0 . То есть достаточно иметь уравнение плоскости, тогда появится возможность для нахождения координат нормального вектора.

Пример 1

Найти координаты нормального вектора, принадлежащего плоскости 2 x - 3 y + 7 z - 11 = 0 .

Решение

По условию имеем уравнение плоскости. Необходимо обратить внимание на коэффициенты, так как они и являются координатами нормального вектора заданной плоскости. Отсюда получаем, что n → = (2 , - 3 , 7) - это нормальный вектор плоскости. Все векторы плоскости задаются при помощи формулы t · n → = 2 · t , - 3 · t , 7 · t , t является любым действительным числом не равным нулю.

Ответ: n → = (2 , - 3 , 7) .

Пример 2

Определить координаты направляющих векторов заданной плоскости x + 2 z - 7 = 0 .

Решение

По условию имеем, что дано неполное уравнение плоскости. Чтобы увидеть координаты, необходимо преобразовать уравнение x + 2 z - 7 = 0 к виду 1 · x + 0 · y + 2 z - 7 = 0 . Отсюда получим, что координаты нормального вектора данной плоскости равны (1 , 0 , 2) . Тогда множество векторов будет иметь такую форму записи (t , 0 , 2 · t) , t ∈ R , t ≠ 0 .

Ответ: (t , 0 , 2 · t) , t ∈ R , t ≠ 0 .

При помощи уравнения плоскости в отрезках, имеющего вид x a + y b + z c = 1 , и общего уравнения плоскости возможна запись нормального вектора этой плоскости, где координаты равны 1 a , 1 b , 1 c .

Знания о нормальном векторе позволяют с легкостью решать задачи. Часто встречающимися задачами являются задания с доказательствами параллельности или перпендикулярности плоскостей. Заметно упрощается решение задач на составление уравнений заданной плоскости. Если имеется вопрос о нахождении угла между плоскостями или между прямой и плоскостью, то формулы нормального вектора и нахождения его координат помогут в этом.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Уравнение плоскости. Как составить уравнение плоскости?
Взаимное расположение плоскостей. Задачи

Пространственная геометрия не намного сложнее «плоской» геометрии, и наши полёты в пространстве начинаются с данной статьи. Для усвоения темы необходимо хорошо разобраться в векторах , кроме того, желательно быть знакомым с геометрией плоскости – будет много похожего, много аналогий, поэтому информация переварится значительно лучше. В серии моих уроков 2D-мир открывается статьёй Уравнение прямой на плоскости . Но сейчас Бэтмен сошёл с плоского экрана телевизора и стартует с космодрома Байконур.

Начнём с чертежей и обозначений. Схематически плоскость можно нарисовать в виде параллелограмма, что создаёт впечатление пространства:

Плоскость бесконечна, но у нас есть возможность изобразить лишь её кусочек. На практике помимо параллелограмма также прорисовывают овал или даже облачко. Мне по техническим причинам удобнее изображать плоскость именно так и именно в таком положении. Реальные плоскости, которые мы рассмотрим в практических примерах, могут располагаться как угодно – мысленно возьмите чертёж в руки и покрутите его в пространстве, придав плоскости любой наклон, любой угол.

Обозначения : плоскости принято обозначать маленькими греческими буквами , видимо, чтобы не путать их с прямой на плоскости или с прямой в пространстве . Я привык использовать букву . На чертеже именно буква «сигма», а вовсе не дырочка. Хотя, дырявая плоскость, это, безусловно, весьма забавно.

В ряде случаев для обозначения плоскостей удобно использовать те же греческие буквы с нижними подстрочными индексами, например, .

Очевидно, что плоскость однозначно определяется тремя различными точками, не лежащими на одной прямой. Поэтому достаточно популярны трёхбуквенные обозначения плоскостей – по принадлежащим им точкам, например, и т.д. Нередко буквы заключают в круглые скобки: , чтобы не перепутать плоскость с другой геометрической фигурой.

Для опытных читателей приведу меню быстрого доступа :

  • Как составить уравнение плоскости по точке и двум векторам?
  • Как составить уравнение плоскости по точке и вектору нормали?

и мы не будем томиться долгими ожиданиями:

Общее уравнение плоскости

Общее уравнение плоскости имеет вид , где коэффициенты одновременно не равны нулю.

Ряд теоретических выкладок и практических задач справедливы как для привычного ортонормированного базиса, так и для аффинного базиса пространства (если масло - масляное, вернитесь к уроку Линейная (не) зависимость векторов. Базис векторов ). Для простоты будем полагать, что все события происходят в ортонормированном базисе и декартовой прямоугольной системе координат.

А теперь немного потренируем пространственное воображение. Ничего страшного, если у вас оно плохое, сейчас немного разовьём. Даже для игры на нервах нужны тренировки.

В самом общем случае, когда числа не равны нулю, плоскость пересекает все три координатные оси. Например, так:

Ещё раз повторю, что плоскость бесконечно продолжается во все стороны, и у нас есть возможность изобразить только её часть.

Рассмотрим простейшие уравнения плоскостей:

Как понимать данное уравнение? Вдумайтесь: «зет» ВСЕГДА, при любых значениях «икс» и «игрек» равно нулю. Это уравнение «родной» координатной плоскости . Действительно, формально уравнение можно переписать так: , откуда хорошо видно, что нам по барабану, какие значения принимают «икс» и «игрек», важно, что «зет» равно нулю.

Аналогично:
– уравнение координатной плоскости ;
– уравнение координатной плоскости .

Немного усложним задачу, рассмотрим плоскость (здесь и далее в параграфе предполагаем, что числовые коэффициенты не равны нулю). Перепишем уравнение в виде: . Как его понимать? «Икс» ВСЕГДА, при любых значениях «игрек» и «зет» равно некоторому числу . Эта плоскость параллельна координатной плоскости . Например, плоскость параллельна плоскости и проходит через точку .

Аналогично:
– уравнение плоскости, которая параллельна координатной плоскости ;
– уравнение плоскости, которая параллельна координатной плоскости .

Добавим членов: . Уравнение можно переписать так: , то есть «зет» может быть любым. Что это значит? «Икс» и «игрек» связаны соотношением , которое прочерчивает в плоскости некоторую прямую (узнаёте уравнение прямой на плоскости ?). Поскольку «зет» может быть любым, то эта прямая «тиражируется» на любой высоте. Таким образом, уравнение определяет плоскость, параллельную координатной оси

Аналогично:
– уравнение плоскости, которая параллельна координатной оси ;
– уравнение плоскости, которая параллельна координатной оси .

Если свободные члены нулевые, то плоскости будут непосредственно проходить через соответствующие оси. Например, классическая «прямая пропорциональность»: . Начертите в плоскости прямую и мысленно размножьте её вверх и вниз (так как «зет» любое). Вывод: плоскость, заданная уравнением , проходит через координатную ось .

Завершаем обзор: уравнение плоскости проходит через начало координат. Ну, здесь совершенно очевидно, что точка удовлетворяет данному уравнению.

И, наконец, случай, который изображён на чертеже: – плоскость дружит со всеми координатными осями, при этом она всегда «отсекает» треугольник, который может располагаться в любом из восьми октантов.

Линейные неравенства в пространстве

Для понимания информации необходимо хорошо изучить линейные неравенства на плоскости , поскольку многие вещи буду похожи. Параграф будет носить краткий обзорный характер с несколькими примерами, так как материал на практике встречается довольно редко.

Если уравнение задаёт плоскость, то неравенства
задают полупространства . Если неравенство нестрогое (два последних в списке), то в решение неравенства кроме полупространства входит и сама плоскость.

Пример 5

Найти единичный нормальный вектор плоскости .

Решение : Единичный вектор – это вектор, длина которого равна единице. Обозначим данный вектор через . Совершенно понятно, что векторы коллинеарны:

Сначала из уравнения плоскости снимем вектор нормали: .

Как найти единичный вектор? Для того чтобы найти единичный вектор , нужно каждую координату вектора разделить на длину вектора .

Перепишем вектор нормали в виде и найдём его длину:

Согласно вышесказанному:

Ответ :

Проверка: , что и требовалось проверить.

Читатели, которые внимательно изучили последний параграф урока , наверное, заметили, что координаты единичного вектора – это в точности направляющие косинусы вектора :

Отвлечёмся от разобранной задачи: когда вам дан произвольный ненулевой вектор , и по условию требуется найти его направляющие косинусы (см. последние задачи урока Скалярное произведение векторов ), то вы, по сути, находите и единичный вектор, коллинеарный данному. Фактически два задания в одном флаконе.

Необходимость найти единичный вектор нормали возникает в некоторых задачах математического анализа.

С выуживанием нормального вектора разобрались, теперь ответим на противоположный вопрос:

Как составить уравнение плоскости по точке и вектору нормали?

Эту жёсткую конструкцию вектора нормали и точки хорошо знает мишень для игры в дартс. Пожалуйста, вытяните руку вперёд и мысленно выберите произвольную точку пространства, например, маленькую кошечку в серванте. Очевидно, что через данную точку можно провести единственную плоскость, перпендикулярную вашей руке.

Уравнение плоскости, проходящей через точку перпендикулярно вектору , выражается формулой:

Вектор нормали

Плоская поверхность с двумя нормалями

В дифференциальной геометрии , нормаль - это прямая , ортогональная (перпендикулярная) касательной прямой к некоторой кривой или касательной плоскости к некоторой поверхности . Также говорят о нормальном направлении .

Вектор нормали к поверхности в данной точке - это единичный вектор , приложенный к данной точке и параллельный направлению нормали. Для каждой точки гладкой поверхности можно задать два нормальных вектора, отличающихся направлением. Если на поверхности можно задать непрерывное поле нормальных векторов, то говорят, что это поле задает ориентацию поверхности (то есть выделяет одну из сторон). Если этого сделать нельзя, поверхность называется неориентируемой .


Wikimedia Foundation . 2010 .

Смотреть что такое "Вектор нормали" в других словарях:

    вектор нормали - normalės vektorius statusas T sritis fizika atitikmenys: angl. normal vector vok. Normalenvektor, m rus. вектор нормали, m pranc. vecteur de la normale, m; vecteur normal, m … Fizikos terminų žodynas

    Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Вектор Дарбу направляющий вектор мгновенной оси вращения, вокруг которой сопровождающий триэдр кривой L поворачивается при… … Википедия

    Электродинамика сплошных сред Электродинамика сплошных сред … Википедия

    Вектор Дарбу направляющий вектор мгновенной оси вращения, вокруг которой сопровождающий триэдр кривой L поворачивается при равномерном движении точки M по кривой L. Вектор Дарбу лежит в спрямляющей плоскости кривой L и выражается через единичные… … Википедия

    Градиент (от лат. gradiens, род. падеж gradientis шагающий), вектор, показывающий направление наискорейшего изменения некоторой величины, значение которой меняется от одной точки пространства к другой (см. Поля теория). Если величина выражается… …

    Направляющий вектор d мгновенной оси вращения, вокруг к рой сопровождающий триэдр кривой Lповорачивается при равномерном движении точки Мпо кривой L. Д. в. лежит в спрямляющей плоскости кривой Lи выражается через единичные векторы главной нормали … Математическая энциклопедия

    Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Гиперповерх … Википедия

    Графический конвейер аппаратно программный комплекс визуализации трёхмерной графики. Содержание 1 Элементы трехмерной сцены 1.1 Аппаратные средства 1.2 Программные интерфейсы … Википедия

    Математическая дисциплина, в которой изучают свойства операций над Векторами евклидова пространства. При этом понятие вектора представляет собой математическую абстракцию величин, характеризующихся не только численным значением, но и… … Большая советская энциклопедия

    У этого термина существуют и другие значения, см. Плоскость. Сюда перенаправляется запрос «Плоскостность». На эту тему нужна отдельная статья … Википедия

Высшая математика I.

Вариант 2.13

1.(С03.РП) Составить уравнение прямой, проходящей через точку перпендикулярно прямой
.

Вектор
- нормальный вектор прямой

,

Запишем уравнение АВ :

Ответ:
.

2.(8Т3.РП) Составить общее уравнение прямой, проходящей через точку
и точку пересечения прямых
и
.

Найдем координаты точки В – точку пересечения прямых
и
:

умножили второе уравнение на -2, а теперь их сложим

Получили координаты т. В (
).

Запишем уравнение АВ :

Ответ:
.

3.(Т43.РП) Написать общее уравнение плоскости, проходящей через точки
,
перпендикулярно плоскости
.

Общее уравнение плоскости имеет вид A(x-x 1 )+B(y-y 1 )+C(z-z 1 ) =0

М 1 (4,-3,3), то можно записать:

A(x-4)+B(y+3)+C(z-3)=0

Т.к. плоскость проходит через точку М 2 (1,1,-2), то можно записать:

A(x-1)+B(y-1)+C(z+2)=0

Искомая плоскость перпендикулярна плоскости заданной уравнением: По условию перпендикулярности плоскостей:

А 1 A 2 +B 1 B 2 +C 1 C 2 =0

1 × А+(-3) × B+5 × C=0

А=3B-5C

Подставим в нижнее уравнение

4.(303) Найти расстояние от точки
до прямой
.

Найдем точку пересечения перпендикуляра проходящего через точку А . Назовем ее Н(x , y , z ) .

АН:3(x-2)+4(y+1)+2z=0 3x+4y+2z-2=0

Параметрические уравнения прямой имеют вид:

т.Н (4,-3,1)

5.(5Б3.РП) Найти те значения параметров и , при которых прямые
и
параллельны.

Для вычисления направляющего вектора используем формулу:

Вычислим направляющий вектор прямой

Т.к. A||B

Получим систему уравнений:

Ответ: А=0, В=-1.

6.(733) Прямая параллельна плоскости , пересекает прямую
и проходит через точку
. Найти ординату точки пересечения прямой с плоскостью
.

Найдем k :

Запишем параметрические уравнения прямой :

Подставим х,у, z в уравнение L и получим значение t.

т.В (8;-8;5) принадлежит L

Запишем параметрические уравнения L:

Подставим данные значения в уравнение :


Найдем ординату точки пересечения

Ответ: -2,5.

7.(983). Найти радиус окружности, имеющей центр в точке
, если она касается прямой
.

Для того, чтобы найти радиус окружности, можно найти расстояние от точки А до данной прямой и данное расстояние будет равно радиусу.

Воспользуемся формулой:

8. Дана кривая .

8.1. Доказать, что данная кривая – эллипс.

8.2.(ТТ3.РП) Найти координаты центра его симметрии.

8.3.(4Б3.РП) Найти его большую и малую полуоси кривой.

8.4.(2П3) Записать уравнение фокальной оси.

8.5. Построить данную кривую.

Каноническое уравнение эллипса имеет вид

Приведём уравнение кривой к каноническому виду:

Т.к. искомое не содержит ху , то остаемся в старой системе координат.

Приняв за новое начало точку
, применим формулы преобразования координат

Это соответствует общему виду уравнения эллипса, у которого большая полуось равна 4, а малая полуось равна 2.

Фокальные радиус – векторы данного эллипса соответствуют уравнению

9. Дана кривая
.

9.1. Доказать, что данная кривая – парабола.

9.2.(Л33). Найти значение её параметра .

9.3.(2Т3.РП). Найти координаты её вершины.

9.4.(7Б3). Написать уравнение её оси симметрии.

9.5. Построить данную кривую.

Каноническое уравнение параболы имеет вид: y 2 =2px

В нашем примере

Т.е. данная кривая – парабола, симметричная относительно оси ординат.

При этом 2р=-12

р=-6, следовательно ветви параболы обращены в вниз.

Вершина параболы находится в точке (-3;-2)

Уравнение оси симметрии данной параболы: х=-3

10. Дана кривая .

10.1. Доказать, что данная кривая – гипербола.

10.2.(793.РП). Найти координаты центра её симметрии.

10.3.(8Д3.РП). Найти действительную и мнимую полуоси.

10.4.(ПС3.РП). Написать уравнение фокальной оси.

10.5. Построить данную кривую.

Каноническое уравнение гиперболы имеет вид

Преобразуем уравнение воспользовавшись формулами поворота оси координат:

Получим:

Найдём l из условия:

т.е. приравняем коэффициент при x`y` к нулю

решения нормального

  • Основная образовательная программа основного общего образования оглавление

    Основная образовательная программа

    ... Векторы . Длина (модуль) вектора . Равенство векторов . Коллинеарные векторы . Координаты вектора . Умножение вектора на число, сумма векторов , разложение вектора ... решение задач развития ребёнка, отсутствующих в содержании образования нормально ...

  • Образовательная программа основного общего образования (фгос ооо)

    Образовательная программа

    ... векторами прямых решения ... обеспечение рациональной организации двигательного режима, нормального физического развития и двигательной подготовленности...

  • Примерная основная образовательная программа

    Программа

    ... векторами , устанавливать перпендикулярность прямых . Выпускник получит возможность: овладеть векторным методом для решения ... обеспечение рациональной организации двигательного режима, нормального физического развития и двигательной подготовленности...