Суть периодической системы элементов. Периодическая система менделеева. Современная формулировка периодического закона такова

Состав атома.

Атом состоит из атомного ядра и электронной оболочки .

Ядро атома состоит из протонов (p + ) и нейтронов (n 0). У большинства атомов водорода ядро состоит из одного протона.

Число протонов N (p + ) равно заряду ядра (Z ) и порядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов).

N (p +) = Z

Сумма числа нейтронов N (n 0), обозначаемого просто буквой N , и числа протонов Z называется массовым числом и обозначается буквой А .

A = Z + N

Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е -).

Число электронов N (e -) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

Масса протона примерно равна массе нейтрона и в 1840 раз больше массы электрона, поэтому масса атома практически равна массе ядра.

Форма атома - сферическая. Радиус ядра примерно в 100000 раз меньше радиуса атома.

Химический элемент - вид атомов (совокупность атомов) с одинаковым зарядом ядра (с одинаковым числом протонов в ядре).

Изотоп - совокупность атомов одного элемента с одинаковым числом нейтронов в ядре (или вид атомов с одинаковым числом протонов и одинаковым числом нейтронов в ядре).

Разные изотопы отличаются друг от друга числом нейтронов в ядрах их атомов.

Обозначение отдельного атома или изотопа: (Э - символ элемента), например: .


Строение электронной оболочки атома

Атомная орбиталь - состояние электрона в атоме. Условное обозначение орбитали - . Каждой орбитали соответствует электронное облако.

Орбитали реальных атомов в основном (невозбужденном) состоянии бывают четырех типов: s , p , d и f .

Электронное облако - часть пространства, в которой электрон можно обнаружить с вероятностью 90 (или более) процентов.

Примечание : иногда понятия "атомная орбиталь" и "электронное облако" не различают, называя и то, и другое "атомной орбиталью".

Электронная оболочка атома слоистая. Электронный слой образован электронными облаками одинакового размера. Орбитали одного слоя образуют электронный ("энергетический") уровень , их энергии одинаковы у атома водорода, но различаются у других атомов.

Однотипные орбитали одного уровня группируются в электронные (энергетические) подуровни:
s -подуровень (состоит из одной s -орбитали), условное обозначение - .
p -подуровень (состоит из трех p
d -подуровень (состоит из пяти d -орбиталей), условное обозначение - .
f -подуровень (состоит из семи f -орбиталей), условное обозначение - .

Энергии орбиталей одного подуровня одинаковы.

При обозначении подуровней к символу подуровня добавляется номер слоя (электронного уровня), например: 2s , 3p , 5d означает s -подуровень второго уровня, p -подуровень третьего уровня, d -подуровень пятого уровня.

Общее число подуровней на одном уровне равно номеру уровня n . Общее число орбиталей на одном уровне равно n 2 . Соответственно этому, общее число облаков в одном слое равно также n 2 .

Обозначения: - свободная орбиталь (без электронов), - орбиталь с неспаренным электроном, - орбиталь с электронной парой (с двумя электронами).

Порядок заполнения электронами орбиталей атома определяется тремя законами природы (формулировки даны упрощенно):

1. Принцип наименьшей энергии - электроны заполняют орбитали в порядке возрастания энергии орбиталей.

2. Принцип Паули - на одной орбитали не может быть больше двух электронов.

3. Правило Хунда - в пределах подуровня электроны сначала заполняют свободные орбитали (по одному), и лишь после этого образуют электронные пары.

Общее число электронов на электронном уровне (или в электронном слое) равно 2n 2 .

Распределение подуровней по энергиям выражается рядом (в прядке увеличения энергии):

1s , 2s , 2p , 3s , 3p , 4s , 3d , 4p , 5s , 4d , 5p , 6s , 4f , 5d , 6p , 7s , 5f , 6d , 7p ...

Наглядно эта последовательность выражается энергетической диаграммой:

Распределение электронов атома по уровням, подуровням и орбиталям (электронная конфигурация атома) может быть изображена в виде электронной формулы, энергетической диаграммы или, упрощенно, в виде схемы электронных слоев ("электронная схема").

Примеры электронного строения атомов:

Валентные электроны - электроны атома, которые могут принимать участие в образовании химических связей. У любого атома это все внешние электроны плюс те предвнешние электроны, энергия которых больше, чем у внешних. Например: у атома Ca внешние электроны - 4s 2 , они же и валентные; у атома Fe внешние электроны - 4s 2 , но у него есть 3d 6 , следовательно у атома железа 8 валентных электронов. Валентная электронная формула атома кальция - 4s 2 , а атома железа - 4s 2 3d 6 .

Периодическая система химических элементов Д. И. Менделеева
(естественная система химических элементов)

Периодический закон химических элементов (современная формулировка): свойства химических элементов, а также простых и сложных веществ, ими образуемых, находятся в периодической зависимости от значения заряда из атомных ядер.

Периодическая система - графическое выражение периодического закона.

Естественный ряд химических элементов - ряд химических элементов, выстроенных по возрастанию числа протонов в ядрах их атомов, или, что то же самое, по возрастанию зарядов ядер этих атомов. Порядковый номер элемента в этом ряду равен числу протонов в ядре любого атома этого элемента.

Таблица химических элементов строится путем "разрезания" естественного ряда химических элементов на периоды (горизонтальные строки таблицы) и объединения в группы (вертикальные столбцы таблицы) элементов, со сходным электронным строением атомов.

В зависимости от способа объединения элементов в группы таблица может быть длиннопериодной (в группы собраны элементы с одинаковым числом и типом валентных электронов) и короткопериодной (в группы собраны элементы с одинаковым числом валентных электронов).

Группы короткопериодной таблицы делятся на подгруппы (главные и побочные ), совпадающие с группами длиннопериодной таблицы.

У всех атомов элементов одного периода одинаковое число электронных слоев, равное номеру периода.

Число элементов в периодах: 2, 8, 8, 18, 18, 32, 32. Большинство элементов восьмого периода получены искусственно, последние элементы этого периода еще не синтезированы. Все периоды, кроме первого начинаются с элемента, образующего щелочной металл (Li, Na, K и т. д.), а заканчиваются элементом, образующим благородный газ (He, Ne, Ar, Kr и т. д.).

В короткопериодной таблице - восемь групп, каждая из которых делится на две подгруппы (главную и побочную), в длиннопериодной таблице - шестнадцать групп, которые нумеруются римскими цифрами с буквами А или В, например: IA, IIIB, VIA, VIIB. Группа IA длиннопериодной таблицы соответствует главной подгруппе первой группы короткопериодной таблицы; группа VIIB - побочной подгруппе седьмой группы: остальные - аналогично.

Характеристики химических элементов закономерно изменяются в группах и периодах.

В периодах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается число внешних электронов,
  • уменьшается радиус атомов,
  • увеличивается прочность связи электронов с ядром (энергия ионизации),
  • увеличивается электроотрицательность,
  • усиливаются окислительные свойства простых веществ ("неметалличность"),
  • ослабевают восстановительные свойства простых веществ ("металличность"),
  • ослабевает основный характер гидроксидов и соответствующих оксидов,
  • возрастает кислотный характер гидроксидов и соответствующих оксидов.

В группах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается радиус атомов (только в А-группах),
  • уменьшается прочность связи электронов с ядром (энергия ионизации; только в А-группах),
  • уменьшается электроотрицательность (только в А-группах),
  • ослабевают окислительные свойства простых веществ ("неметалличность"; только в А-группах),
  • усиливаются восстановительные свойства простых веществ ("металличность"; только в А-группах),
  • возрастает основный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • ослабевает кислотный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • снижается устойчивость водородных соединений (повышается их восстановительная активность; только в А-группах).

Задачи и тесты по теме "Тема 9. "Строение атома. Периодический закон и периодическая система химических элементов Д. И. Менделеева (ПСХЭ)"."

  • Периодический закон - Периодический закон и строение атомов 8–9 класс
    Вы должны знать: законы заполнения орбиталей электронами (принцип наименьшей энергии, принцип Паули, правило Хунда), структуру периодической системы элементов.

    Вы должны уметь: определять состав атома по положению элемента в периодической системе, и, наоборот, находить элемент в периодической системе, зная его состав; изображать схему строения, электронную конфигурацию атома, иона, и, наоборот, определять по схеме и электронной конфигурации положение химического элемента в ПСХЭ; давать характеристику элемента и образуемых им веществ по его положению в ПСХЭ; определять изменения радиуса атомов, свойств химических элементов и образуемых ими веществ в пределах одного периода и одной главной подгруппы периодической системы.

    Пример 1. Определите количество орбиталей на третьем электронном уровне. Какие это орбитали?
    Для определения количества орбиталей воспользуемся формулой N орбиталей = n 2 , где n - номер уровня. N орбиталей = 3 2 = 9. Одна 3s -, три 3p - и пять 3d -орбиталей.

    Пример 2. Определите, у атома какого элемента электронная формула 1s 2 2s 2 2p 6 3s 2 3p 1 .
    Для того, чтобы определить, кокой это элемент, надо выяснить его порядковый номер, который равен суммарному числу электронов атома. В данном случае: 2 + 2 + 6 + 2 + 1 = 13. Это алюминий.

    Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.


    Рекомендованная литература:
    • О. С. Габриелян и др. Химия 11 кл. М., Дрофа, 2002;
    • Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 11 кл. М., Просвещение, 2001.

Если таблица Менделеева кажется вам сложной для понимания, вы не одиноки! Хотя бывает непросто понять ее принципы, умение работать с ней поможет при изучении естественных наук. Для начала изучите структуру таблицы и то, какую информацию можно узнать из нее о каждом химическом элементе. Затем можно приступить к изучению свойств каждого элемента. И наконец, с помощью таблицы Менделеева можно определить число нейтронов в атоме того или иного химического элемента.

Шаги

Часть 1

Структура таблицы

    Таблица Менделеева, или периодическая система химических элементов, начинается в левом верхнем углу и заканчивается в конце последней строки таблицы (в нижнем правом углу). Элементы в таблице расположены слева направо в порядке возрастания их атомного номера. Атомный номер показывает, сколько протонов содержится в одном атоме. Кроме того, с увеличением атомного номера возрастает и атомная масса. Таким образом, по расположению того или иного элемента в таблице Менделеева можно определить его атомную массу.

  1. Как видно, каждый следующий элемент содержит на один протон больше, чем предшествующий ему элемент. Это очевидно, если посмотреть на атомные номера. Атомные номера возрастают на один при движении слева направо. Поскольку элементы расположены по группам, некоторые ячейки таблицы остаются пустыми.

    • Например, первая строка таблицы содержит водород, который имеет атомный номер 1, и гелий с атомным номером 2. Однако они расположены на противоположных краях, так как принадлежат к разным группам.
  2. Узнайте о группах, которые включают в себя элементы со схожими физическими и химическими свойствами. Элементы каждой группы располагаются в соответствующей вертикальной колонке. Как правило, они обозначаются одним цветом, что помогает определить элементы со схожими физическими и химическими свойствами и предсказать их поведение. Все элементы той или иной группы имеют одинаковое число электронов на внешней оболочке.

    • Водород можно отнести как к группе щелочных металлов, так и к группе галогенов. В некоторых таблицах его указывают в обеих группах.
    • В большинстве случаев группы пронумерованы от 1 до 18, и номера ставятся вверху или внизу таблицы. Номера могут быть указаны римскими (например, IA) или арабскими (например,1A или 1) цифрами.
    • При движении вдоль колонки сверху вниз говорят, что вы «просматриваете группу».
  3. Узнайте, почему в таблице присутствуют пустые ячейки. Элементы упорядочены не только в соответствии с их атомным номером, но и по группам (элементы одной группы обладают схожими физическими и химическими свойствами). Благодаря этому можно легче понять, как ведет себя тот или иной элемент. Однако с ростом атомного номера не всегда находятся элементы, которые попадают в соответствующую группу, поэтому в таблице встречаются пустые ячейки.

    • Например, первые 3 строки имеют пустые ячейки, поскольку переходные металлы встречаются лишь с атомного номера 21.
    • Элементы с атомными номерами с 57 по 102 относятся к редкоземельным элементам, и обычно их выносят в отдельную подгруппу в нижнем правом углу таблицы.
  4. Каждая строка таблицы представляет собой период. Все элементы одного периода имеют одинаковое число атомных орбиталей, на которых расположены электроны в атомах. Количество орбиталей соответствует номеру периода. Таблица содержит 7 строк, то есть 7 периодов.

    • Например, атомы элементов первого периода имеют одну орбиталь, а атомы элементов седьмого периода - 7 орбиталей.
    • Как правило, периоды обозначаются цифрами от 1 до 7 слева таблицы.
    • При движении вдоль строки слева направо говорят, что вы «просматриваете период».
  5. Научитесь различать металлы, металлоиды и неметаллы. Вы лучше будете понимать свойства того или иного элемента, если сможете определить, к какому типу он относится. Для удобства в большинстве таблиц металлы, металлоиды и неметаллы обозначаются разными цветами. Металлы находятся в левой, а неметаллы - в правой части таблицы. Металлоиды расположены между ними.

    Часть 2

    Обозначения элементов
    1. Каждый элемент обозначается одной или двумя латинскими буквами. Как правило, символ элемента приведен крупными буквами в центре соответствующей ячейки. Символ представляет собой сокращенное название элемента, которое совпадает в большинстве языков. При проведении экспериментов и работе с химическими уравнениями обычно используются символы элементов, поэтому полезно помнить их.

      • Обычно символы элементов являются сокращением их латинского названия, хотя для некоторых, особенно недавно открытых элементов, они получены из общепринятого названия. К примеру, гелий обозначается символом He, что близко к общепринятому названию в большинстве языков. В то же время железо обозначается как Fe, что является сокращением его латинского названия.
    2. Обратите внимание на полное название элемента, если оно приведено в таблице. Это «имя» элемента используется в обычных текстах. Например, «гелий» и «углерод» являются названиями элементов. Обычно, хотя и не всегда, полные названия элементов указываются под их химическим символом.

      • Иногда в таблице не указываются названия элементов и приводятся лишь их химические символы.
    3. Найдите атомный номер. Обычно атомный номер элемента расположен вверху соответствующей ячейки, посередине или в углу. Он может также находиться под символом или названием элемента. Элементы имеют атомные номера от 1 до 118.

      • Атомный номер всегда является целым числом.
    4. Помните о том, что атомный номер соответствует числу протонов в атоме. Все атомы того или иного элемента содержат одинаковое количество протонов. В отличие от электронов, количество протонов в атомах элемента остается постоянным. В противном случае получился бы другой химический элемент!

      • По атомному номеру элемента можно также определить количество электронов и нейтронов в атоме.
    5. Обычно количество электронов равно числу протонов. Исключением является тот случай, когда атом ионизирован. Протоны имеют положительный, а электроны - отрицательный заряд. Поскольку атомы обычно нейтральны, они содержат одинаковое количество электронов и протонов. Тем не менее, атом может захватывать электроны или терять их, и в этом случае он ионизируется.

      • Ионы имеют электрический заряд. Если в ионе больше протонов, то он обладает положительным зарядом, и в этом случае после символа элемента ставится знак «плюс». Если ион содержит больше электронов, он имеет отрицательный заряд, что обозначается знаком «минус».
      • Знаки «плюс» и «минус» не ставятся, если атом не является ионом.

    Д. И. Менделеев пришел к выводу, что их свойства должны быть обусловлены какими-то фундаментальными общими характеристиками. Такой фундаментальной характеристикой для химического элемента он выбрал атомную массу элемента и кратко сформулировал периодический закон (1869 г.):

    Свойства элементов, а также свойства образуемых ими простых и сложных тел находятся в периодической зависимости от величин атомных весов элементов.

    Заслуга Менделеева состоит в том, что он понял проявленную зависимость как объективную закономерность природы, чего не смогли сделать его предшественники. Д. И. Менделеев считал, что в периодической зависимости от атомной массы находятся состав соединений, их химические свойства, температуры кипения и плавления, строение кристаллов и тому подобное. Глубокое понимание сути периодической зависимости дало Менделееву возможность сделать несколько важных выводов и предположений.

    Современная таблица Менделеева

    Во-первых, из известных в то время 63 элементов Менделеев изменил атомные массы почти у 20 элементов (Be, In, La, Y, Ce, Th, U). Во-вторых, он предсказал существование около 20 новых элементов и оставил для них место в периодической системе. Три из них, а именно экабор, екаалюминий и екасилиций были описаны достаточно подробно и с удивительной точностью. Это триумфально подтвердилось в течение последующих пятнадцати лет, когда были открыты элементы Галлий (екаалюминий), скандий (экабор) и Германий (екасилиций).

    Периодический закон является одним из фундаментальных законов природы. Его влияние на развитие научного мировоззрения можно сравнить только с законом сохранения массы и энергии или квантовой теории. Еще во времена Д. И. Менделеева периодический закон стал основой химии. Дальнейшие открытия строения и явления изотопии показали, что главной количественной характеристикой элемента является не атомная масса, а заряд ядра(Z). В 1913 г. Мозли и Резерфорд ввели понятие «порядковый номер элемента», пронумеровали в периодической системе все символы и показали, что в основу классификации элементов является порядковый номер элемента, равный заряда ядер их атомов.

    Это утверждение известно сейчас как закон Мозли.

    Поэтому современное определение периодического закона формулируется следующим образом:

    Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от значения заряда их атомных ядер (или от порядкового номера элемента в периодической системе).

    Электронные структуры атомов элементов наглядно показывают, что при росте заряда ядра происходит закономерное периодическое повторение электронных структур, а значит, и повторение свойств элементов. Это отражается в периодической системе элементов, для которой предложено несколько сотен вариантов. Чаще всего используют две формы таблиц — сокращенную и развернутую, — содержащие все известные элементы и имеющие свободные места для пока не открытых.

    Каждый элемент занимает в периодической таблице определенную ячейку, в которой указано символ и название элемента, его порядковый номер, относительную атомную массу, а для радиоактивных элементов в квадратных скобках приведены массовое число наиболее стабильного или доступного изотопа. В современных таблицах часто приводятся и некоторые другие справочные сведения: плотность, температуры кипения и плавления простых веществ и т.п.

    Периоды

    Основными структурными единицами периодической системы есть периоды и группы — естественные совокупности, на которые делятся химические элементы по электронным структурами.

    Период — это горизонтальный последовательный ряд элементов, в атомах которых электроны заполняют одинаковое количество энергетических уровней.

    Номер периода совпадает с номером внешнего квантового уровня. Например, элемент кальций (4s 2) находится в четвертом периоде, то есть его атом имеет четыре энергетические уровни, а валентные электроны находятся на внешнем, четвертом уровне. Разница в последовательности заполнения как внешних, так и более близких к ядру электронных слоев объясняет причину различной длины периодов.

    В атомов s- и р-элементов идет застройка внешнего уровня, в d-элементов — второго снаружи, а в f-элементов — третьего снаружи энергетического уровня.

    Поэтому различие в свойствах наиболее отчетливо проявляется в соседних s- или р-элементах. В d- и особенно f-элементах одного и того же периода различие в свойствах менее значительно.

    Как уже упоминалось, по признаку номера энергетического подуровня застраиваемого электронами, элементы объединяются в электронные семьи. Например, в IV-VI периодах находятся семьи, которые содержат по десять d-элементов: 3d-семья (Sc-Zn), 4d- семья (Y-Cd), 5d- семья (La, Hf-Hg). В шестом и седьмом периодах по четырнадцать элементов составляют f-семьи: 4f-семью (Се-Lu), которая носит название лантаноидной, и 5f-семью (Th-Lr) — актиноидную. Эти семьи размещают под периодической таблицей.

    Первые три периода называются малыми, или типичными периодами, поскольку свойства элементов этих периодов является основой для распределения всех других элементов на восемь групп. Все остальные периоды, включая и седьмой, незавершенный, называются большими периодами.

    Все периоды, кроме первого, начинаются с щелочных (Li, Na, K, Rb, Cs, Fr) и заканчиваются, за исключением седьмого, незавершенного, инертными элементами (He, Ne, Ar, Kr, Xe, Rn). Щелочные металлы имеют одну и ту же внешнюю электронную конфигурацию n s 1 , где n — номер периода. Инертные элементы, кроме гелия (1s 2), имеют одинаковое строение внешнего электронного слоя: n s 2 n p 6 , то есть электронными аналогами.

    Рассмотренная закономерность дает возможность прийти к выводу:

    Периодическое повторение одинаковых электронных конфигураций внешнего электронного слоя является причиной сходства физических и химических свойств у элементов-аналогов, так как именно внешние электроны атомов в основном определяют их свойства.

    В малых типовых периодах с увеличением порядкового номера наблюдается постепенное уменьшение металлических и рост неметаллических свойств, поскольку увеличивается количество валентных электронов на внешнем энергетическом уровне. Например, атомы всех элементов третьего периода имеют по три электронных слоя. Строение двух внутренних слоев одинаково для всех элементов третьего периода (1s 2 2s 2 2p 6), а строение внешнего, третьего, слоя различно. При переходе от каждого предыдущего элемента к каждому последующему заряд ядра атома возрастает на единицу и соответственно увеличивается количество внешних электронов. В результате их притяжение к ядру усиливается, а радиус атома уменьшается. Это приводит к ослаблению металлических свойств и росту неметаллических.

    Третий период начинается очень активным металлом натрием (11 Na — 3s 1), за которым следует несколько менее активный магний (12 Mg — 3s 2). Оба эти металлы относятся к 3s-семье. Первый р-элемент третьего периода алюминий (13 Al — 3s 2 3p 1), металлическая активность которого меньше, чем у магния, имеет амфотерные свойства, то есть в химических реакциях может вести себя и как неметалл. Далее следуют неметаллы кремний (14 Si — 3s 2 3p 2), фосфор (15 P — 3s 2 3p 3), сера (16 S — 3s 2 3p 4), хлор (17 Cl — 3s 2 3p 5). Их неметаллические свойства усиливаются от Si к Cl, который является активным неметаллом. Период заканчивается инертным элементом аргоном (18 Ar — 3s 2 3p 6).

    В пределах одного периода свойства элементов меняются постепенно, а при переходе от предыдущего периода к следующему наблюдается резкое изменение свойств, поскольку начинается застройка нового энергетического уровня.

    Постепенность изменения свойств характерна не только для простых веществ, но и для сложных соединений, как это представлено в таблице 1.

    Таблица 1 — Некоторые свойства элементов третьего периода и их соединений

    Электронная семья s-элементы р-элементы
    Символ элемента Na Mg Al Si P S Cl Ar
    Заряд ядра атома +11 +12 +13 +14 +15 +16 +17 +18
    Внешняя электронная конфигурация 3s 1 3s 2 3s 2 3p 1 3s 2 3p 2 3s 2 3p 3 3s 2 3p 4 3s 2 3p 5 3s 2 3p 6
    Атомный радиус, нм 0,189 0,160 0,143 0,118 0,110 0,102 0,099 0,054
    Максимальная валентность I II III IV V VI VII
    Высшие оксиды и их свойства Na 2 O MgO Al 2 O 3 SiO 2 P 2 O 5 SO 3 Cl 2 O 7
    Основные свойства Амфотерные свойства Кислотные свойства
    Гидраты оксидов (основы или кислоты) NaOH Mg (OH) 2 Al (OH) 3 H 2 SiO 3 H 3 PO 4 H 2 SO 4 HСlO 4
    Основание Слабое основание Амфотерный гидроксид Слабая кислота Кислота средней силы Сильная кислота Сильная кислота
    Соединения с водородом NaH MgH 2 AlH 3 SiH 4 PH 3 H 2 S HCl
    Твердые солеобразные вещества Газообразные вещества

    В больших периодах металлические свойства ослабляются медленнее. Это связано с тем, что, начиная с четвертого периода, появляются десять переходных d-элементов, в которых застраивается не внешний, а второй снаружи d-подуровень, а на внешнем слое d-элементов находятся один или два s-электрона, которые и определяют в известной степени свойства этих элементов. Таким образом, для d-элементов закономерность несколько усложняется. Например, в пятом периоде металлические свойства постепенно уменьшаются от щелочного Rb, достигают минимальной силы у металлов семьи платины (Ru, Rh, Pd).

    Однако после неактивного Ag серебра размещается кадмий Cd, у которого наблюдается скачкообразный рост металлических свойств. Далее с ростом порядкового номера элемента появляются и постепенно усиливаются неметаллические свойства вплоть до типового неметалла йода. Заканчивается этот период, как и все предыдущие, инертным газом. Периодическая смена свойств элементов внутри больших периодов позволяет разделить их на два ряда, в которых вторая часть периода повторяет первую.

    Группы

    Вертикальные столбики элементов в периодической таблице — группы состоят из подгрупп: главной и побочной, они иногда обозначаются буквами А и Б соответственно.

    В состав главных подгрупп входят s- и р-элементы, а в состав побочных — d- и f-элементы больших периодов.

    Главная подгруппа — это совокупность элементов, которая размещается в периодической таблице вертикально и имеет одинаковую конфигурацию внешнего электронного слоя в атомах.

    Как следует из приведенного определения, положения элемента в главной подгруппе определяется общим количеством электронов (s- и р-) внешнего энергетического уровня, равным номеру группы. Например, сера (S — 3s 2 3p 4 ), в атоме которого на внешнем уровне содержится шесть электронов, относится к главной подгруппе шестой группы, аргон (Ar — 3s 2 3p 6 ) — к главной подгруппе восьмой группы, а стронций (Sr — 5s 2 ) — к ІІА-подгруппе.

    Элементы одной подгруппы характеризуются сходством химических свойств. В качестве примера рассмотрим элементы ІА и VІІА подгрупп (табл.2). С ростом заряда ядра увеличивается количество электронных слоев и радиус атома, но количество электронов на внешнем энергетическом уровне остается постоянной: для щелочных металлов (подгруппа IА) — один, а для галогенов (подгруппа VIIА) — семь. Поскольку именно внешние электроны наиболее существенно влияют на химические свойства, то понятно, что каждая из рассмотренных групп элементов-аналогов имеет подобные свойства.

    Но в пределах одной подгруппы наряду с подобием свойств наблюдается их некоторое изменение. Так, элементы подгруппы ІА все, кроме Н — активные металлы. Но с ростом радиуса атома и количества электронных слоев экранирующих влияние ядра на валентные электроны, металлические свойства усиливаются. Поэтому Fr более активный металл, чем Сs, a Cs — более активный, чем R в и т.д. А в подгруппе VIIA по той же причине ослабляются неметаллические свойства элементов при росте порядкового номера. Поэтому F — более активный неметалл по сравнению с Cl, a Cl — более активный неметалл сравнению с Br и т.д.

    Таблица 2 — Некоторые характеристики элементов ІА и VІІА-подгрупп

    период Подгруппа IA Подгруппа VIIA
    Символ элемента Заряд ядра Радиус атома, нм Символ элемента Заряд ядра Радиус атома, нм Внешняя электронная конфигурацiя
    II Li +3 0,155 2 s 1 F +9 0,064 2 s 2 2 p 5
    III Na +11 0,189 3 s 1 Cl +17 0,099 3 s 2 3 p 5
    IV K +19 0,236 4 s 1 Br 35 0,114 4 s 2 4 p 5
    V Rb +37 0,248 5 s 1 I +53 0,133 5 s 2 5 p 5
    VI Cs 55 0,268 6 s 1 At 85 0,140 6 s 2 6 p 5
    VII Fr +87 0,280 7 s 1

    Побочные подгруппа — это совокупность элементов, размещаемых в периодической таблице вертикально и имеют одинаковое количество валентных электронов за счет застройки внешнего s- и втором снаружи d-энергетических подуровней.

    Все элементы побочных подгрупп относятся к d-семейству. Эти элементы иногда называют переходными металлами. В побочных подгруппах свойства изменяются более медленно, поскольку в атомах d-элементов электроны застраивают второй извне энергетический уровень, а на внешнем уровне находятся только один или два электрона.

    Положение первых пяти d-элементов (подгруппы IIIБ- VIIБ) каждого периода можно определить с помощью суммы внешних s-электронов и d-электронов второго снаружи уровня. Например, из электронной формулы скандия (Sc — 4s 2 3d 1 ) видно, что он размещается в побочной подгруппе (поскольку является d-элементом) третьей группы (поскольку сумма валентных электронов равна трем), а марганец (Mn — 4s 2 3d 5 ) размещается в побочной подгруппе седьмой группы.

    Положение последних двух элементов каждого периода (подгруппы IБ и IIБ) можно определить по количеству электронов на внешнем уровне, поскольку в атомах этих элементов предыдущий уровень является полностью завершенным. Например, Ag (5s 1 5d 10) размещается в побочной подгруппе первой группы, Zn (4s 2 3d 10) — в побочной подгруппе второй группы.

    Триады Fe-Co-Ni, Ru-Rh-Pd и Os-Ir-Pt размещены в побочной подгруппе восьмой группы. Эти триады образуют две семьи: железа и платиноидов. Кроме указанных семей отдельно выделяют семью лантаноидов (четырнадцать 4f-элементов) и семью актиноидов (четырнадцать 5f-элементов). Эти семьи принадлежат к побочной подгруппе третьей группы.

    Рост металлических свойств элементов в подгруппах сверху вниз, а также уменьшение этих свойств в пределах одного периода слева направо обусловливают появление в периодической системе диагональной закономерности. Так, Be очень похож на Al, B — на Si, Ti — на Nb. Это ярко проявляется в том, что в природе эти элементы образуют подобные минералы. Например, в природе Те всегда бывает с Nb, образуя минералы — титанониобаты.

    Первый вариант Периодической таблицы элементов был опубликован Дмитрием Ивановичем Менделеевым в 1869 году и назывался «Опыт системы элементов».

    Д.И. Менделеев расположил 63 известных в то время элемента в порядке возрастания их атомных масс и получил естественный ряд химических элементов , в котором он обнаружил периодическую повторяемость химических свойств. Данный ряд химических элементов теперь известен как Периодический закон (формулировка Д.И. Менделеева):

    Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

    Современная формулировка закона звучит так:

    с войства химических элементов, простых веществ, а также состав и свойства соединений находятся в периодической зависимости от значений зарядов ядер атомов.

    Графическим изображением периодического закона является периодическая таблица .

    В ячейке каждого элемента указаны его важнейшие характеристики.

    Периодическая таблица содержит группы и периоды.

    Группа - столбец периодической системы, в котором располагаются химические элементы, обладающие химическим сходством вследствие идентичных электронных конфигураций валентного слоя.

    Периодическая система Д.И. Менделеева содержит восемь групп элементов. Каждая группа состоит их двух подгрупп: главной (а) и побочной (б). В главной подгруппе содержатся s- и p- элементы, в побочной - d- элементы.

    Названия групп:

    I-a Щелочные металлы.

    II-a Щелочноземельные металлы.

    V-a Пниктогены.

    VI-a Халькогены.

    VII-a Галогены.

    VIII-a Благородные (инертные) газы.

    Период - это последовательность элементов, записанная в виде строки, расположенных в порядке увеличения зарядов их ядер. Номер периода соответсвует количеству электронных уровней в атоме.

    Период начинается с щелочного металла (или водорода) и заканчивается благородным газом.

    Параметр

    По группе вниз

    По периоду вправо

    Заряд ядра

    Увеличивается

    Увеличивается

    Число валентных электронов

    Не меняется

    Увеличивается

    Число энергетических уровней

    Увеличивается

    Не меняется

    Радиус атома

    Увеличивается

    Уменьшается

    Электроотрицательность

    Уменьшается

    Увеличивается

    Металлические свойства

    Увеличиваются

    Уменьшаются

    Степень окисления в высшем оксиде

    Не меняется

    Увеличивается

    Степень окисления в водородных соединениях (для элементов IV-VII групп)

    Не меняется

    Увеличивается


    Современная периодическая таблица химических элементов Менделеева.

    Периодический закон Д. И. Менделеева: Свойства простых тел, а также формы и свойства соеди­ нений элементов находятся в периодической зависимости от величины атомных весов элементов.(Свойства эл-тов находяхтся в периодической зависимости от заряда атомов их ядер).

    Периодическая система элементов. Ряды элементов, в пре­делах которых свойства изменяются последовательно, как, напри­мер, ряд из восьми элементов от лития до неона или от натрия до аргона, Менделеев назвал периодами. Если напишем эти два периода один под другим так, чтобы под литием находился натрий, а под неоном - аргон, то получим следующее расположение эле­ментов:

    При таком расположении в вертикальные столбцы попадают элементы, сходные по своим свойствам и обладающие одинаковой валентностью, например, литий и натрий, бериллий и магний и т. д.

    Разделив все элементы на периоды и располагая один период под другим так, чтобы Сходные по свойствам и типу образуемых соединений элементы приходились друг под другом, Менделеев со­ставил таблицу, названную им периодической системой элементов по группам и рядам.

    Значение периодической систе мы. Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественнойклассификацией химических элементов, показавшей, что они обра­зуют стройную систему и находятся в тесной связи друг с дру­гом, но и явилась могучим орудием для дальнейших исследо­ваний.

    7. Периодическое изменение свойств химических элементов. Атомные и ионные радиусы. Энергия ионизации. Сродство к электрону. Электроотрицательность.

    Зависимость атомных радиусов от заряда ядра атома Z имеет периодический характер. В пределах одного периода с увеличе­нием Z проявляется тенденция к уменьшению размеров атома, что особенно четко наблюдается в коротких периодах

    С началом застройки нового электронного слоя, более удален­ного от ядра, т. е. при переходе к следующему периоду, атомные радиусы возрастают (сравните, например, радиусы атомов фтора и натрия). В результате в пределах подгруппы с возрастанием заряда ядра размеры атомов увеличиваются.

    Потеря атомов электронов приводит к уменьшению его эф­фективных размеров, а присоединение избыточных электронов - к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного нона (аниона) всегда больше радиуса соответствующего электронейтрального атома.

    В пределах одной подгруппы радиусы ионов одинакового за­ряда возрастают с увеличением заряда ядра Такая закономерность объясняется увеличением числа элек­тронных слоев и растущим удалением внешних электронов от ядра.

    Наиболее ха­рактерным химическим свойством металлов является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, а неметаллы, наоборот, харак­теризуются способностью присоединять электроны с образованием отрицательных ионов. Для отрыва электрона от атома с превраще­нием последнего в положительный ион нужно затратить некоторую энергию, называемую энергией ионизации.

    Энергию ионизации можно определить путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наи­меньшее напряжение поля, при котором скорость электронов ста­новится достаточной для ионизации атомов, называется потен­циалом ионизации атомов данного элемента и выражается в вольтах. При затрате достаточной энергии можно оторвать от атома два, три и более электронов. Поэтому говорят о первом потен­циале ионизации (энергия отрыва от атома первого элек­трона).втором потенциале ионизации (энергия отрыва второго электрона)

    Как отмечалось выше, атомы могут не только отдавать, но и присоединять электроны. Энергия, выделяющаяся при присоедине­нии электрона к свободному атому, называется сродством атома к электрону. Сродство к электрону, как и энергия ионизации, обычно выражается в электронвольтах. Так, сродство к электрону атома водорода равно 0,75 эВ, кислорода-1,47 эВ, фтора -3,52 эВ.

    Сродство к электрону атомов металлов, как правило, близко к нулю или отрицательно; из этого следует, что для атомов боль­шинства металлов присоединение электронов энергетически невы­годно. Сродство же к электрону атомов неметаллов всегда поло­жительно и тем больше, чем ближе к благородному газу распо­ложен неметалл в периодической системе; это свидетельствует об усилении неметаллических свойств по мере приближения к концу периода.