Формула мат индукции. Метод математической индукции. Метод полной математической индукции

Савельева Екатерина

В работе рассматривается применение метода математической индукции в решении задач на делимость, к суммированию рядов. Рассматриваются примеры применения метода математической индукции к доказательству неравенств и к решению геометрических задач. Работа иллюстрирована презентацией.

Скачать:

Предварительный просмотр:

Министерство науки и образования РФ

Государственное образовательное учреждение

средняя общеобразовательная школа № 618

По курсу: алгебра и начала анализа

Теме проектной работы

«Метод математической индукции и его применение к решению задач»

Работу выполнила : Савельева Е, 11В класс

Руководитель : Макарова Т.П., учитель математики ГОУ СОШ №618

1. Введение.

2.Метод математической индукции в решении задач на делимость.

3.Применение метода математической индукции к суммированию рядов.

4.Примеры применения метода математической индукции к доказательству неравенств.

5.Применение метода математической индукции к решению геометрических задач.

6.Список использованной литературы.

Введение

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом - частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному. Метод математической индукции можно сравнить с прогресс-сом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно. Хотя и выросла область применения метода математической индукции, в школьной программе ему отводится мало времени.А ведь это так важно - уметь размышлять индуктивно. Применение этого принципа при решении задач и доказательстве теорем находится в одном ряду с рассмотрением в школьной практике и других математических принципов: исключенного третьего, включения-исключения, Дирихле и др. В этом реферате содержатся задачи из разных разделов математики, в которых основным инструментом является использование метода математической индукции. Говоря о важ-ности этого метода, А.Н. Колмогоров отмечал, что «понимание и умение применять принцип математической индукции является хорошим критерием зрелости, которая совершенно необходима математику». Метод индукции в широком его понимании состоит в переходе от частных наблюдений к универсальной, общей закономерности или обшей формулировке. В таком толковании метод — это, конечно, основной прием проведения исследований в любой экспериментальной естественнонаучной

деятельности человека. Метод (принцип) математической индукции в простейшей его форме применяется тогда, когда нужно доказать некоторое утверждение для всех натуральных чисел.

Задача 1. В свой статье «Как я стал математиком» А.Н. Колмогоров пишет: «Радость математического «открытия» я познал рано, подметив в возрасте пяти-шести лет закономерность

1 =1 2 ,

1 + 3 = 2 2 ,

1 + 3 + 5 = З 2 ,

1 + 3 + 5 + 7 = 4 2 и так далее.

В школе издавался журнал "Весенние ласточки". В нем мое открытие было опубликовано...»

Какое именно доказательство было приведено в этом журнале, мы не знаем, но началось все с частных наблюдений. Сама гипотеза, которая, наверняка, возникла после обнаружения этих частных равенств, состоит в том, что формула

1 + 3 + 5 + ... + (2n - 1) = п 2

верна при любом заданном числе п = 1, 2, 3, ...

Для доказательства этой гипотезы достаточно установить два факта. Во-первых, для п = 1 (и даже для п = 2, 3, 4) нужное утверждение верно. Во-вторых, предположим, что утверждение верно при п = к, и убедимся, что тогда оно верно и для п = к + 1:

1 + 3 + 5+…+ (2к - 1) + (2к + 1) = (1 + 3 + 5 + ... + (2к - 1)) + (2к + 1) = к 2 + (2к + 1) = (к + I) 2 .

Значит, доказываемое утверждение верно для всех значений п: для п = 1 оно верно (это проверено), а в силу второго факта — для п = 2, откуда для п = 3 (в силу того же, второго факта) и т.д.

Задача 2. Рассмотрим все возможные обыкновенные дроби с числителем 1 и любым (целым положи-

тельным) знаменателем: Доказать,что для любого п > 3 можно представить единицу в виде суммы п различных дробей такого вида.

Решение, Проверим сначала данное утверждение при п = 3; имеем:

Следовательно, базовое утверждение выполнено

Предположим теперь, что интересующее нас утверждение верно для какого-то числа к, и докажем, что оно верно и для следующего за ним числа к + 1. Другими словами, предположим, что существует представление

в котором k слагаемых и все знаменатели разные. Докажем, что тогда можно получить представление единицы в виде суммы из к + 1 дробей нужного вида. Будем считать, что дроби убывают, то есть знаменатели (в представлении единицы суммой к слагаемых) возрастают слева направо так, что т — наибольший из знаменателей. Мы получим нужное нам представление в виде суммы + 1)-й дроби, если разобьем одну дробь, например последнюю, на две. Это можно сделать, так как

И поэтому

Кроме того, все дроби остались различными, так как т было наибольшим знаменателем, а т + 1 > т , и

т(т + 1) > т.

Таким образом, нами установлено:

  1. при п = 3 данное утверждение верно;
  1. если интересующее нас утверждение верно для к,
    то оно верно и для к + 1.

На этом основании мы можем утверждать, что рассматриваемое утверждение верно для всех натуральных чисел, начиная с трех. Более того, из приведенного доказательства следует и алгоритм отыскания нужного разбиения единицы. (Какой это алгоритм? Представьте число 1 в виде суммы 4, 5, 7 слагаемых самостоятельно.)

При решении предыдущих двух задач были сделаны два шага. Первый шаг называют базисом индукции, второй — индуктивным переходом или шагом индукции. Второй шаг наиболее важен, и он включает в себя предположение (утверждение верно при п = к) и заключение (утверждение верно при п = к + 1). Сам параметр п называется параметром индукции. Эта логическая схема (прием), позволяющая заключить, что рассматриваемое утверждение верно для всех натуральных чисел (или для всех, начиная с некоторого), так как справедливы и базис, и переход, называется принципом математической индукции, на котором и основан метод математической индукции. Сам термин «индукция» происходит от латинского слова induktio (наведение), которое означает переход от единичного знания об отдельных предметах данного класса к общему выводу о всех предметах данного класса, что является одним из основных методов познания.

Принцип математической индукции, именно в привычной форме двух шагов, впервые появился в 1654 году в работе Блеза Паскаля «Трактат об арифметическом треугольнике», в которой индукцией доказывался простой способ вычисления числа сочетаний (биномиальных коэффициентов). Д. Пойа в книге цитирует Б. Паскаля с небольшими изменениями, данными в квадратных скобках:

«Несмотря на то, что рассматриваемое предложение [явная формула для биномиальных коэффициентов] содержит бесчисленное множество частных случаев, я дам для нее совсем короткое доказательство, основанное на двух леммах.

Первая лемма утверждает, что предположение верно для основания — это очевидно. [При п = 1 явная формула справедлива...]

Вторая лемма утверждает следующее: если наше предположение верно для произвольного основания [для произвольного тг], то оно будет верным и для следующего за ним основания [для п + 1].

Из этих двух лемм необходимо вытекает справедливость предложения для всех значений п. Действительно, в силу первой леммы оно справедливо для п = 1; следовательно, в силу второй леммы оно справедливо для п = 2; следовательно, опять-таки в силу второй леммы, оно справедливо для п = 3 и так до бесконечности».

Задача 3. Головоломка «Ханойские башни» состоит из трех стержней. На одном из стержней находится пирамидка (рис. 1), состоящая из нескольких колец разного диаметра, уменьшающихся снизу вверх

Рис 1

Эту пирамидку нужно переместить на один из других стержней, перенося каждый раз только одно кольцо и не помещая большее кольцо на меньшее. Можно ли это сделать?

Решение. Итак, нам необходимо ответить на вопрос: можно ли переместить пирамидку, состоящую из п колец разного диаметра, с одного стержня на другой, соблюдая правила игры? Теперь задача нами, как говорят, параметризована (введено в рассмотрение натуральное число п), и ее можно решать методом математической индукции.

  1. База индукции. При п = 1 все ясно, так как пирамидку из одного кольца очевидно можно переместить на любой стержень.
  2. Шаг индукции. Предположим, что мы умеем перемещать любые пирамидки с числом колец п = к.
    Докажем, что тогда мы сможем переместить и пира мидку с п = к + 1.

Пирамидку из к колец, лежащих на самом большом + 1)-м кольце, мы можем, согласно предположению, переместить на любой другой стержень. Сделаем это. Неподвижное + 1)-е кольцо не будет нам мешать провести алгоритм перемещения, так как оно самое большое. После перемещения к колец, переместим это самое большое + 1)-е кольцо на оставшийся стержень. И затем опять применим известный нам по индуктивному предположению алгоритм перемещения к колец, и переместим их на стержень с лежащим внизу + 1)-м кольцом. Таким образом, если мы умеем перемещать пирамидки с к кольцами, то умеем перемещать пирамидки и с к + 1 кольцами. Следовательно, согласно принципу математической индукции, всегда можно переместить нужным образом пирамидку, состоящую из п колец, где п > 1.

Метод математической индукции в решении задач на делимость.

С помощью метода математической индукции можно доказывать различные утверждения, касающиеся делимости натуральных чисел.

Задача 4 . Если n - натуральное число, то число четное.

При n=1 наше утверждение истинно: - четное число. Предположим, что - четное число. Так как, a 2k - четное число, то и четное. Итак, четность доказана при n=1, из четности выведена четность.Значит, четно при всех натуральных значениях n.

Задача 3. Доказать, что число З 3 + 3 - 26n — 27 при произвольном натуральном п делится на 26 2 без остатка.

Решение. Предварительно докажем по индукции вспомогательное утверждение, что 3 3n+3 — 1 делится на 26 без остатка при п > 0.

  1. База индукции. При п = 0 имеем: З 3 - 1 = 26 —делится на 26.

Шаг индукции. Предположим, что 3 3n + 3 - 1 делится на 26 при п = к, и докажем, что в этом случае утверждение будет верно при п = к + 1. Так как 3

то из индуктивного предположения заключаем, что число 3 3k + 6 - 1 делится на 26.

Теперь докажем утверждение, сформулированное в условии задачи. И снова по индукции.

  1. База индукции. Очевидно, что при п = 1 утверждение верно: так как 3 3+3 - 26 - 27 = 676 = 26 2 .
  2. Шаг индукции. Предположим, что при п = к
    выражение 3 3k + 3 - 26k - 27 делится на 26 2 без остатка, и докажем, что утверждение верно при п = к + 1,
    то есть что число

делится на 26 2 без остатка. В последней сумме оба слагаемых делятся без остатка на 26 2 . Первое — потому что мы доказали делимость выражения, стоящего в скобках, на 26; второе — по предположению индукции. В силу принципа математической индукции, нужное утверждение полностью доказано.

Применение метода математической индукции к суммированию рядов.

Задача 5. Доказать формулу

N - натуральное число.

Решение.

При n=1 обе части равенства обращаются в единицу и, следовательно, первое условие принципа математической индукции выполнено.

Предположим, что формула верна при n=k, т.е.

Прибавим к обеим частям этого равенства и преобразуем правую часть. Тогда получим

Таким образом, из того, что формула верна при n=k, следует, что она верна и при n=k+1. Это утверждение справедливо при любом натуральном значении k. Итак, второе условие принципа математической индукции тоже выполнено. Формула доказана.

Задача 6. На доске написаны два числа: 1,1. Вписав между числами их сумму, мы получим числа 1, 2, 1. Повторив эту операцию еще раз, получим числа 1, 3, 2, 3, 1. После трех операций будут числа 1, 4, 3, 5, 2, 5, 3, 4, 1. Какова будет сумма всех чисел на доске после 100 операций?

Решение. Выполнять все 100 операций было бы очень трудоемким и долгим занятием. Значит, нужно попытаться найти какую-то общую формулу для суммы S чисел после п операций. Посмотрим на таблицу:

Заметили ли вы здесь какую-нибудь закономерность? Если нет, можно сделать еще один шаг: после четырех операций будут числа

1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1,

сумма которых S 4 равна 82.

В действительности можно не выписывать числа, а сразу сказать, как изменится сумма после добавления новых чисел. Пусть сумма была равна 5. Какой она станет, когда добавятся новые числа? Разобьем каждое новое число в сумму двух старых. Например, от 1, 3, 2, 3, 1 мы переходим к 1,

1 + 3, 3, 3 + 2, 2, 2 + 3, 3, 3 + 1, 1.

То есть каждое старое число (кроме двух крайних единиц) входит теперь в сумму три раза, поэтому новая сумма равна 3S - 2 (вычитаем 2, чтобы учесть недостающие единицы). Поэтому S 5 = 3S 4 - 2 = 244, и вообще

Какова же общая формула? Если бы не вычитание двух единиц, то каждый раз сумма увеличивалась бы в три раза, как в степенях тройки (1, 3, 9, 27, 81, 243, ...). А наши числа, как теперь видно, на единицу больше. Таким образом, можно предположить, что

Попробуем теперь доказать это по индукции.

База индукции. Смотри таблицу (для п = 0, 1, 2, 3).

Шаг индукции. Предположим, что

Докажем тогда, что S к + 1 = З к + 1 + 1.

Действительно,

Итак, наша формула доказана. Из нее видно, что после ста операций сумма всех чисел на доске будет равна З 100 + 1.

Рассмотрим один замечательный пример применения принципа математической индукции, в котором сначала нужно ввести два натуральных параметра и затем провести индукцию по их сумме.

Задача 7. Доказать, что если = 2, х 2 = 3 и для всякого натурального п > 3 имеет место соотношение

х п = Зх п - 1 - 2х п - 2 ,

то

2 п - 1 + 1, п = 1, 2, 3, ...

Решение. Заметим, что в этой задаче исходная последовательность чисел {х п } определяется по индукции, поскольку члены нашей последовательности, кроме двух первых, задаются индуктивно, то есть через предыдущие. Так заданные последовательности называют рекуррентными, и в нашем случае эта последовательность определяется (заданием первых двух ее членов) единственным образом.

База индукции. Она состоит из проверки двух утверждений: при п = 1 и п = 2.В обоих случаях утверждение справедливо по условию.

Шаг индукции. Предположим, что для п = к - 1 и п = к утверждение выполнено, то есть

Докажем тогда справедливость утверждения для п = к + 1. Имеем:

х 1 = 3(2 + 1)- 2(2 + 1) = 2+1, что и требовалось доказать.

Задача 8. Доказать, что любое натуральное число можно представить в виде суммы нескольких различных членов рекуррентной последовательности чисел Фибоначчи:

при к > 2.

Решение. Пусть п — натуральное число. Будем проводить индукцию по п.

База индукции. При п = 1 утверждение справедливо, поскольку единица сама является числом Фибоначчи.

Шаг индукции. Предположим, что все натуральные числа, меньшие некоторого числа п, можно представить в виде суммы нескольких различных членов последовательности Фибоначчи. Найдем наибольшее число Фибоначчи F т , не превосходящее п; таким образом, F т п и F т +1 > п.

Поскольку

По предположению индукции число п- F т может быть представлено в виде суммы 5 нескольких различных членов последовательности Фибоначчи, причем из последнего неравенства следует, что все члены последовательности Фибоначчи, участвующие в сумме 8, меньше F т . Поэтому разложение числа п = 8 + F т удовлетворяет условию задачи.

Примеры применения метода математической индукции к доказательству неравенств.

Задача 9. (Неравенство Бернулли.) Докажите, что при х > -1, х 0, и при целом п > 2 справедливо неравенство

(1 + х) п > 1 + хп.

Решение. Доказательство снова будем проводить по индукции.

1. База индукции. Убедимся в справедливости неравенства при п = 2. Действительно,

(1 + х) 2 = 1 + 2х + х 2 > 1 + 2х.

2. Шаг индукции. Предположим, что для номера п = к утверждение справедливо, то есть

(1 + х) к > 1 + хк,

Где к > 2. Докажем его при п = к + 1. Имеем: (1 + х) к + 1 = (1 + х) к (1 + х)>(1 + кх){1 + х) =

1 + (к + 1)х + кх 2 > 1 + (к + 1)х.

Итак, на основании принципа математической индукции можно утверждать, что неравенство Бернулли справедливо для любого п > 2.

Не всегда в условиях задач, решаемых с помощью метода математической индукции, бывает четко сформулирован общий закон, который нужно доказывать. Иногда приходится путем наблюдений частных случаев сначала обнаружить (догадаться), к какому общему закону они приводят, и только потом доказывать высказанную гипотезу методом математической индукции. Кроме того, переменная индукции может быть замаскированной, и прежде, чем решать задачу, необходимо определить, по какому параметру будет проводиться индукция. В качестве примеров рассмотрим следующие задачи.

Задача 10. Доказать, что

при любом натуральном п > 1.

Решение, Попробуем доказать это неравенство методом математической индукции.

Базис индукции проверяется без труда:1+

По предположению индукции

и нам остается доказать, что

Если воспользоваться индуктивным предположением, то мы будем утверждать, что

Хотя это равенство на самом деле верно, оно не дает нам решения задачи.

Попробуем доказать более сильное утверждение, чем это требуется в исходной задаче. А именно, докажем, что

Может показаться, что доказывать это утверждение методом индукции дело безнадежное.

Однако при п = 1 имеем: утверждение верно. Для обоснования индуктивного шага предположим, что

и докажем тогда, что

Действительно,

Таким образом, нами доказано более сильное утверждение, из которого сразу же следует утверждение, содержащееся в условии задачи.

Поучительным здесь является то, что хотя нам и пришлось доказывать более сильное утверждение, чем это требуется в задаче, но мы могли пользоваться и более сильным предположением в индуктивном шаге. Этим и объясняется, что прямолинейное применение принципа математической индукции не всегда приводит к цели.

Ситуация, возникшая при решении задачи, получила название парадокса изобретателя. Сам парадокс состоит в том, что более сложные планы могут быть реализованы с большим успехом, если они базируются на более глубоком понимании существа дела.

Задача 11. Докажите, что 2 т + п - 2 тп при любых натуральных тип.

Решение. Здесь мы имеем два параметра. Поэтому можно попробовать провести так называемую двойную индукцию (индукция внутри индукции).

Будем проводить индуктивное рассуждение по п.

1. База индукции по п. При п = 1 нужно проверить, что 2 т ~ 1 > т. Для доказательства этого неравенства воспользуемся индукцией по т.

а) База индукции по т. При т = 1 выполняется
равенство, что допустимо.

б) Шаг индукции по т. Предположим, что при т = к утверждение верно, то есть 2 к ~ 1 > к. Тогда до
кажем, что утверждение будет верным и при
т = к + 1.
Имеем:

при натуральных к.

Таким образом, неравенство 2 выполняется при любом натуральном т.

2. Шаг индукции по п. Выберем и зафиксируем какое-нибудь натуральное число т. Предположим, что при п = I утверждение справедливо (при фиксированном т), то есть 2 т +1 ~ 2 > т1, и докажем, что тогда утверждение будет справедливым и при п = l + 1.
Имеем:

при любых натуральных т и п.

Следовательно, на основании принципа математической индукции (по п) утверждение задачи верно при любых п и при любом фиксированном т. Таким образом, данное неравенство выполняется при любых натуральных тип.

Задача 12. Пусть т, п и к — натуральные числа, причем т > п. Какое из двух чисел больше:

В каждом выражении к знаков квадратного корня, т и п чередуются.

Решение. Докажем сначала некоторое вспомогательное утверждение.

Лемма. При любых натуральных т и п (т > п) и неотрицательном (не обязательно целом) х справедливо неравенство

Доказательство. Рассмотрим неравенство

Это неравенство справедливо, так как оба сомножителя в левой части положительны. Раскрывая скобки и преобразовывая, получаем:

Извлекая квадратный корень из обеих частей последнего неравенства, получим утверждение леммы. Итак, лемма доказана.

Перейдем теперь к решению задачи. Обозначим первое из данных чисел через а, а второе — через Ь к . Докажем, что а при любом натуральном к. Доказательство будем проводить методом математической индукции отдельно для четных и нечетных к.

База индукции. При к = 1 имеем неравенство

у[т > у/п , справедливое в силу того, что т > п. При к = 2 требуемое получается из доказанной леммы подстановкой х = 0.

Шаг индукции. Предположим, при некотором к неравенство а >b к справедливо. Докажем, что

Из предположения индукции и монотонности квадратного корня имеем:

С другой стороны, из доказанной леммы следует,

Объединяя два последних неравенства, получаем:

Согласно принципу математической индукции, утверждение доказано.

Задача 13. (Неравенство Коши.) Докажите, что для любых положительных чисел..., а п справедливо неравенство

Решение. При п = 2 неравенство

о среднем арифметическом и среднем геометрическом (для двух чисел) будем считать известным. Пусть п= 2 , к = 1, 2, 3, ... и сначала проведем индукцию по к. База этой индукции имеет место Предположив теперь, что нужное неравенство уже установлено для п = 2 , докажем его для п = 2 . Имеем (применяя неравенство для двух чисел):

Следовательно, по индукционному предположению

Таким образом, индукцией по k мы доказали неравенство для всех п 9 являющихся степенью двойки.

Для доказательства неравенства для других значений п воспользуемся «индукцией вниз», то есть докажем, что если неравенство выполнено для произвольных неотрицательных п чисел, то оно справедливо также и для (п - 1)-го числа. Чтобы в этом убедиться, заметим, что по сделанному предположению для п чисел выполнено неравенство

то есть а г + а 2 + ... + а п _ х > (п — 1)А. Разделив обе части на п - 1, получим требуемое неравенство.

Итак, сначала мы установили, что неравенство имеет место для бесконечного числа возможных значений п, а затем показали, что если неравенство выполнено для п чисел, то оно справедливо и для (п - 1) числа. Отсюда теперь мы и заключаем, что неравенство Коти имеет место для набора из п любых неотрицательных чисел при любом п = 2, 3, 4, ...

Задача 14. (Д. Успенский.) Для любого треугольника АВС, у которого углы = САB, = СВА соизмеримы, имеют место неравенства

Решение. Углы и соизмеримы, а это (по определению) означает, что эти углы имеют общую меру, для которой = р, = (р, q— натуральные взаимно простые числа).

Воспользуемся методом математической индукции и проведем ее по сумме п = р + q натуральных взаимно простых чисел..

База индукции. При р + q = 2 имеем: р = 1 и q = 1. Тогда треугольник АВС равнобедренный, и нужные неравенства очевидны: они следуют из неравенства треугольника

Шаг индукции. Предположим теперь, что нужные неравенства установлены для р + q = 2, 3, ..., к — 1, где к > 2. Докажем, что неравенства справедливы и для р + q = к.

Пусть АВС — данный треугольник, у которого > 2. Тогда стороны АС и ВС не могут быть равными: пусть АС > ВС. Построим теперь, как на рисунке 2, равнобедренный треугольник АВС; имеем:

АС = DС и АD=АВ + ВD, следовательно,

2АС > АВ + ВD (1)

Рассмотрим теперь треугольник ВDС, углы которого также соизмеримы:

DСВ = (q - р), ВDС = p.

Рис. 2

Для этого треугольника выполнено индуктивное предположение, и поэтому

(2)

Складывая (1) и (2), имеем:

2AC+BD>

и поэтому

Из того же треугольника ВБС по предположению индукции заключаем, что

Учитывая предыдущее неравенство, заключаем, что

Таким образом, индуктивный переход получен, и утверждение задачи следует из принципа математической индукции.

Замечание. Утверждение задачи остается в силе и в том случае, когда углы а и р не являются соизмеримыми. В основе рассмотрения в общем случае уже приходится применять другой важный математический принцип — принцип непрерывности.

Задача 15. Несколько прямых делят плоскость на части. Доказать, что можно раскрасить эти части в белый

и черный цвета так, чтобы соседние части, имеющие общий отрезок границы, были разного цвета (как на рисунке 3 при п = 4).

рис 3

Решение. Воспользуемся индукцией по числу прямых. Итак, пусть п — число прямых, делящих нашу плоскость на части, п > 1.

База индукции. Если прямая одна (п = 1), то она делит плоскость на две полуплоскости, одну из которых можно раскрасить в белый цвет, а вторую в черный, и утверждение задачи верно.

Шаг индукции. Чтобы доказательство индуктивного перехода было более понятно, рассмотрим процесс добавления одной новой прямой. Если проведем вторую прямую (п = 2), то получим четыре части, которые можно раскрасить нужным образом, покрасив противоположные углы в один цвет. Посмотрим, что произойдет, если мы проведем третью прямую. Она поделит некоторые «старые» части, при этом появятся новые участки границы, по обе стороны которых цвет один и тот же (рис. 4).

Рис. 4

Поступим следующим образом: с одной стороны от новой прямой поменяем цвета — белый сделаем черным и наоборот; при этом те части, которые лежат по другую сторону от этой прямой, не перекрашиваем (рис. 5). Тогда эта новая раскраска будет удовлетворять нужным требованиям: с одной стороны прямой она уже была чередующейся (но с другими цветами), а с другой стороны она и была нужной. Для того чтобы части, имеющие общую границу, принадлежащую проведенной прямой, были окрашены в разные цвета, мы и перекрашивали части только с одной стороны от этой проведенной прямой.

Рис.5

Докажем теперь индуктивный переход. Предположим, что для некоторого п = к утверждение задачи справедливо, то есть все части плоскости, на которые она делится этими к прямыми, можно раскрасить в белый и черный цвета так, чтобы соседние части были разного цвета. Докажем, что тогда существует такая раскраска и для п = к + 1 прямых. Поступим аналогично случаю перехода от двух прямых к трем. Проведем на плоскости к прямых. Тогда, по предположению индукции, полученную «карту» можно раскрасить нужным образом. Проведем теперь + 1)-ю прямую и с одной стороны от нее поменяем цвета на противоположные. Таким образом, теперь + 1)-я прямая всюду разделяет участки разного цвета, при этом «старые» части, как мы уже видели, остаются правильно раскрашенными. Согласно принципу математической индукции, задача решена.

Задача 16. На краю пустыни имеются большой запас бензина и машина, которая при полной заправке может проехать 50 километров. В неограниченном количестве имеются канистры, в которые можно сливать бензин из бензобака машины и оставлять на хранение в любой точке пустыни. Доказать, что машина может проехать любое целочисленное расстояние, большее 50 километров. Канистры с бензином возить не разрешается, пустые можно возить в любом количестве.

Решение. Попытаемся доказать индукцией по п, что машина может отъехать на п километров от края пустыни. При п = 50 это известно. Осталось провести шаг индукции и объяснить, как проехать п = к + 1 километров, если известно, что п = к километров проехать можно.

Однако тут мы встречаемся с трудностью: после того как мы проехали к километров, бензина может не хватить даже на обратную дорогу (не говоря уже о хранении). И в данном случае выход состоит в усилении доказываемого утверждения (парадокс изобретателя). Будем доказывать, что можно не только проехать п километров, но и сделать сколь угодно большой запас бензина в точке на расстоянии п километров от края пустыни, оказавшись в этой точке после окончания перевозок.

База индукции. Пусть единица бензина — это количество бензина, необходимое для совершения одного километра пути. Тогда рейс на расстояние в 1 километр и обратно требует двух единиц бензина, поэтому мы можем оставить 48 единиц бензина в хранилище на расстоянии километра от края и вернуться за новой порцией. Таким образом, за несколько рейсов в хранилище можно сделать запас произвольного размера, который нам потребуется. При этом, чтобы создать 48 единиц запаса, мы расходуем 50 единиц бензина.

Шаг индукции. Предположим, что на расстоянии п = к от края пустыни можно запасти любое количество бензина. Докажем, что тогда можно создать хранилище на расстоянии п = к + 1 километров с любым заданным наперед запасом бензина и оказаться у этого хранилища в конце перевозок. Поскольку в точке п = к имеется неограниченный запас бензина, то (согласно базе индукции) мы можем за несколько рейсов в точку п = к + 1 сделать в точке п = к 4- 1 запас произвольного размера, который потребуется.

Истинность более общего утверждения, чем в условии задачи, теперь следует из принципа математической индукции.

Заключение

В частности, изучив метод математической индукции, я повысила свои знания в этой области математики, а также научилась решать задачи, которые раньше были мне не под силу.

В основном это были логические и занимательные задачи, т.е. как раз те, которые повышают интерес к самой математике как к науке. Решение таких задач становится занимательным занятием и может привлечь в математические лабиринты всё новых любознательных. По-моему, это является основой любой науки.

Продолжая изучать метод математической индукции, я постараюсь научиться применять его не только в математике, но и в решении проблем физики, химии и самой жизни.

Литература

1.Вuленкин ИНДУКЦИЯ. Комбинаторика. Пособие ДЛЯ учителей. М., Просвещение,

1976.-48 с.

2.Головина Л.И., Яглом И.М. Индукция в геометрии. - М.: Госуд. издат. литер. - 1956 - С.I00. Пособие по математике для поступающих в вузы/ Под ред. Яковлева Г.Н. Наука. -1981. - С.47-51.

3.Головина Л.И., Яглом ИМ. Индукция в геометрии. —
М.: Наука, 1961. — (Популярные лекции по математике.)

4. И.Т.Демидов,А.Н.Колмогоров, С.И.Шварцбург,О.С.Ивашев-Мусатов, Б.Е.Вейц. Учебное пособие / “Просвещение” 1975.

5.Р. Курант, Г Роббинс «Что такое математика?» Глава 1, § 2

6.Попа Д. Математика и правдоподобные рассуждения. — М,: Наука, 1975.

7.Попа Д. Математическое открытие. — М.: Наука,1976.

8.Рубанов И.С. Как обучать методу математической индукции/ Математика школе. - Nl. - 1996. - С.14-20.

9.Соминский И.С., Головина Л.И., Яглом ИМ. О методе математической индукции. — М.: Наука, 1977. — (Популярные лекции по математике.)

10.Соломинский И.С. Метод математической индукции. - М.: Наука.

63с.

11.Соломинский И.С., Головина Л.И., Яглом И.М. О математической индукции. - М.:Наука. - 1967. - С.7-59.

12.httр://ш.wikiреdiа.оrg/wiki

13.htt12:/ /www.rеfешtсоllесtiоп.ru/40 124.html

Математическая индукция лежит в основе одного из самых распространенных методов математических доказательств. С его помощью можно доказать большую часть формул с натуральными числами n , например, формулу нахождения суммы первых членов прогрессии S n = 2 a 1 + n - 1 d 2 · n , формулу бинома Ньютона a + b n = C n 0 · a n · C n 1 · a n - 1 · b + . . . + C n n - 1 · a · b n - 1 + C n n · b n .

В первом пункте мы разберем основные понятия, потом рассмотрим основы самого метода, а затем расскажем, как с его помощью доказывать равенства и неравенства.

Понятия индукции и дедукции

Для начала рассмотрим, что такое вообще индукция и дедукция.

Определение 1

Индукция – это переход от частного к общему, а дедукция наоборот – от общего к частному.

Например, у нас есть утверждение: 254 можно разделить на два нацело. Из него мы можем сделать множество выводов, среди которых будут как истинные, так и ложные. Например, утверждение, что все целые числа, которые имеют в конце цифру 4 , могут делиться на два без остатка – истинное, а то, что любое число из трех знаков делится на 2 – ложное.

В целом можно сказать, что с помощью индуктивных рассуждений можно получить множество выводов из одного известного или очевидного рассуждения. Математическая индукция позволяет нам определить, насколько справедливы эти выводы.

Допустим, у нас есть последовательность чисел вида 1 1 · 2 , 1 2 · 3 , 1 3 · 4 , 1 4 · 5 , . . . , 1 n (n + 1) , где n обозначает некоторое натуральное число. В таком случае при сложении первых элементов последовательности мы получим следующее:

S 1 = 1 1 · 2 = 1 2 , S 2 = 1 1 · 2 + 1 2 · 3 = 2 3 , S 3 = 1 1 · 2 + 1 2 · 3 + 1 3 · 4 = 3 4 , S 4 = 1 1 · 2 + 1 2 · 3 + 1 3 · 4 + 1 4 · 5 = 4 5 , . . .

Используя индукцию, можно сделать вывод, что S n = n n + 1 . В третьей части мы докажем эту формулу.

В чем заключается метод математической индукции

В основе этого метода лежит одноименный принцип. Он формулируется так:

Определение 2

Некое утверждение будет справедливым для натурального значения n тогда, когда 1) оно будет верно при n = 1 и 2) из того, что это выражение справедливо для произвольного натурального n = k , следует, что оно будет верно и при n = k + 1 .

Применение метода математической индукции осуществляется в 3 этапа:

  1. Для начала мы проверяем верность исходного утверждения в случае произвольного натурального значения n (обычно проверка делается для единицы).
  2. После этого мы проверяем верность при n = k .
  3. И далее доказываем справедливость утверждения в случае, если n = k + 1 .

Как применять метод математической индукции при решении неравенств и уравнений

Возьмем пример, о котором мы говорили ранее.

Пример 1

Докажите формулу S n = 1 1 · 2 + 1 2 · 3 + . . . + 1 n (n + 1) = n n + 1 .

Решение

Как мы уже знаем, для применения метода математической индукции надо выполнить три последовательных действия.

  1. Для начала проверяем, будет ли данное равенство справедливым при n , равном единице. Получаем S 1 = 1 1 · 2 = 1 1 + 1 = 1 2 . Здесь все верно.
  2. Далее делаем предположение, что формула S k = k k + 1 верна.
  3. В третьем шаге нам надо доказать, что S k + 1 = k + 1 k + 1 + 1 = k + 1 k + 2 , основываясь на справедливости предыдущего равенства.

Мы можем представить k + 1 в качестве суммы первых членов исходной последовательности и k + 1:

S k + 1 = S k + 1 k + 1 (k + 2)

Поскольку во втором действии мы получили, что S k = k k + 1 , то можно записать следующее:

S k + 1 = S k + 1 k + 1 (k + 2) .

Теперь выполняем нужные преобразования. Нам потребуется выполнить приведение дроби к общему знаменателю, приведение подобных слагаемых, применить формулу сокращенного умножения и сократить то, что получилось:

S k + 1 = S k + 1 k + 1 (k + 2) = k k + 1 + 1 k + 1 (k + 2) = = k (k + 2) + 1 k + 1 (k + 2) = k 2 + 2 k + 1 k + 1 (k + 2) = (k + 1) 2 k + 1 (k + 2) = k + 1 k + 2

Таким образом, мы доказали равенство в третьем пункте, выполнив все три шага метода математической индукции.

Ответ: предположение о формуле S n = n n + 1 является верным.

Возьмем более сложную задачу с тригонометрическими функциями.

Пример 2

Приведите доказательство тождества cos 2 α · cos 4 α · . . . · cos 2 n α = sin 2 n + 1 α 2 n sin 2 α .

Решение

Как мы помним, первым шагом должна быть проверка верности равенства при n , равном единице. Чтобы это выяснить, нам надо вспомнить основные тригонометрические формулы.

cos 2 1 = cos 2 α sin 2 1 + 1 α 2 1 sin 2 α = sin 4 α 2 sin 2 α = 2 sin 2 α · cos 2 α 2 sin 2 α = cos 2 α

Следовательно, при n , равном единице, тождество будет верным.

Теперь предположим, что его справедливость сохранится при n = k , т.е. будет верно, что cos 2 α · cos 4 α · . . . · cos 2 k α = sin 2 k + 1 α 2 k sin 2 α .

Доказываем равенство cos 2 α · cos 4 α · . . . · cos 2 k + 1 α = sin 2 k + 2 α 2 k + 1 sin 2 α для случая, когда n = k + 1 , взяв за основу предыдущее предположение.

Согласно тригонометрической формуле,

sin 2 k + 1 α · cos 2 k + 1 α = = 1 2 (sin (2 k + 1 α + 2 k + 1 α) + sin (2 k + 1 α - 2 k + 1 α)) = = 1 2 sin (2 · 2 k + 1 α) + sin 0 = 1 2 sin 2 k + 2 α

Следовательно,

cos 2 α · cos 4 α · . . . · cos 2 k + 1 α = = cos 2 α · cos 4 α · . . . · cos 2 k α · cos 2 k + 1 α = = sin 2 k + 1 α 2 k sin 2 α · cos 2 k + 1 α = 1 2 · sin 2 k + 1 α 2 k sin 2 α = sin 2 k + 2 α 2 k + 1 sin 2 α

Пример решения задачи на доказательство неравенства с применением этого метода мы привели в статье о методе наименьших квадратов. Прочтите тот пункт, в котором выводятся формулы для нахождения коэффициентов аппроксимации.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Министерство образования Саратовской области

Саратовский государственный социально - экономический университет

Областной конкурс математических и компьютерных работ школьников

«Вектор будущего – 2007»

«Метод математической индукции.

Его применение к решению алгебраических задач»

(секция «математика»)

Творческая работа

ученицы 10«А» класса

МОУ «Гимназии №1»

Октябрьского района г. Саратова

Арутюнян Гаянэ.

Руководитель работы:

учитель математики

Гришина Ирина Владимировна.

Саратов

2007

Введение…………………………………………………………………………………3

Принцип математической индукции и его

доказательство…………………………………………………………………………..4

Примеры решений задач………………………………………………………………..9

Заключение……………………………………………………………………………..16

Литература………………………...……………………………………………………17

Введение.

Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно и подкреплять свою мысль доказательством, проведённым по всем правилам логики.
В настоящее время выросла область применения метода математической индукции, но в школьной программе ему, к сожалению, отводится мало времени. А ведь это так важно - уметь размышлять индуктивно.

Принцип математической индукции и его доказательство

Обратимся к существу метода математической индукции. Рассмотрим различные утверждения. Их можно подразделить на общие и частные.Приведем примеры общих утверждений.

Все граждане России имеют право на образование.

Во всяком параллелограмме диагонали в точке пересечения делятся пополам.

Все числа, оканчивающиеся нулем, делятся на 5 .

Соответствующие примеры частных утверждений:

Петров имеет право на образование.

В параллелограмме ABCD диагонали в точке пересечения делятся пополам.

140 делится на 5.

Переход от общих утверждений к частным называется дедукцией (от латинского deductio - вывод по правилам логики).

Рассмотрим пример дедуктивного вывода.

Все граждане России имеют право на образование. (1)

Петров – гражданин России. (2)

Петров имеет право на образование. (3)

Из общего утверждения (1) при помощи (2) получено частное утверждение (3).

Обратный переход от частных утверждений к общим называется индукцией (от латинского inductio - наведение).

Индукция может привести как к верным, так и к неверным выводам.

Поясним это двумя примерами.

140 делится на 5. (1)

Все числа, оканчивающиеся нулем, делятся на 5 . (2)

140 делится на 5. (1)

Все трехзначные числа делятся на 5. (2)

Из частного утверждения (1) получено общее утверждение (2). Утверждение (2) верно.

Второй пример показывает, как из частного утверждения (1) может быть получено общее утверждение (3) , притом утверждение (3) не является верным.

Зададимся вопросом, как пользоваться в математике индукцией, чтобы получать только верные выводы. Рассмотрим несколько примеров индукции, недопустимой в математике.

Пример 1 .

Рассмотрим квадратный трехчлен следующего вида Р(x )= x 2 + x + 41, на который обратил внимание еще Леонард Эйлер.

Р(0) = 41, Р(1) = 43, Р(2) = 47, Р(3) = 53, Р(4) = 61, Р(5) = 71, Р(6) = 83, Р(7) = 97, Р(8) = 113, Р(9)=131, Р(10) = 151.

Мы видим, что всякий раз значение трехчлена - простое число. На основании полученных результатов утверждаем, что при подстановке в рассматриваемый трехчлен вместо x любого целого неотрицательного числа всегда в результате получается простое число.

Однако сделанный вывод не может считаться достоверным. В чем же дело? Дело в том, что в рассуждениях высказаны общие утверждения относительно любого х только на основании того, что это утверждение оказалось справедливым для некоторых значений х.

В самом деле, при более внимательном изучении трехчлена Р(х) числа Р(0), Р(1), …, Р(39) - простые числа, но Р(40) = 41 2 – составное число. И совсем явно: Р(41) = 41 2 +41+41 кратно 41.

В этом примере мы встретились с утверждением, справедливым в 40 частных случаях и все же вообще оказавшимся несправедливым.

Рассмотрим еще несколько примеров.

Пример 2.

В 17 веке В.Г. Лейбниц доказал, что при всяком натуральном n числа вида n 3 - n кратны 3, n 5 - n кратны 5, n 7 - n кратны 7. На основании этого, он предложил, что при всяком нечетном k и натуральном n число n k - n кратно k , но скоро сам заметил, что 2 9 –2=510, которое, очевидно, не делится на 9 .

Рассмотренные примеры позволяют сделать важный вывод: утверждение может быть справедливым в целом ряде частных случаев и в то же время несправедливым вообще.

Естественно возникает вопрос: имеется утверждение, справедливое в нескольких частных случаях; все частные случаи рассмотреть невозможно; как же узнать, справедливо ли это утверждение вообще?

Этот вопрос иногда удается решить посредством применения особого метода рассуждений, называемого методом математической индукции. В основе этого метода лежит принцип математической индукции , заключенный в следующем: утверждение справедливо для любого натурального n , если:

    оно справедливо для n = 1;

    из справедливости утверждения для какого-то произвольного натурального n =k , следует его справедливость для n = k +1.

Доказательство.

Предположим противное, то есть пусть утверждение справедливо не для всякого натурального n . Тогда существует такое натуральное число m , что

    утверждение для n =m несправедливо,

    для всех n

Очевидно, что m >1, так как при n =1 утверждение справедливо (условие 1). Следовательно, m -1 - натуральное число. Для натурального числа m -1 утверждение справедливо, а для следующего натурального числа m оно несправедливо. Это противоречит условию 2. Полученное противоречие показывает неверность предположения. Следовательно, утверждение справедливо для всякого натурального n, ч. т. д.

Доказательство, основанное на принципе математической индукции, называется доказательством методом математической индукции. Такое доказательство должно состоять из двух частей, из доказательства двух самостоятельных теорем.

Теорема 1 . Утверждение справедливо для n =1.

Теорема 2 . Утверждение справедливо для n =k +1, если оно справедливо для n=k, где k-произвольное натуральное число.

Если обе эти теоремы доказаны, то на основании принципа математической индукции утверждение справедливо для любого
натурального n .

Необходимо подчеркнуть, что доказательство методом математической индукции, безусловно, требует доказательства обеих теорем 1 и 2. Пренебрежительное отношение к теореме 2 приводит к неверным выводам (примеры 1-2). Покажем на примере, сколь обязательно доказательство теоремы 1.

Пример 3 . «Теорема»: всякое натуральное число равно следующему за ним натуральному числу.

Доказательство проведем методом математической индукции.

Предположим, что k =k +1 (1).

Докажем, что k +1=k +2 (2). Для этого к каждой части «равенства» (1) прибавим 1.Получаем «равенство» (2). Выходит, что если утверждение справедливо для n =k , то оно справедливо и для n =k +1., ч.т.д.

Очевидное «следствие» из «теоремы»: все натуральные числа равны.

Ошибка заключается в том, что теорема 1, необходимая для применения принципа математической индукции не доказана и не верна, а доказана только вторая теорема.

Теоремы 1 и 2 имеют особое значение.

Теорема 1 создает базу для проведения индукции. Теорема 2 дает право неограниченного автоматического расширения этой базы, право перехода от данного частного случая к следующему, от n к n +1.

Если не доказана теорема 1 , а доказана теорема 2 , то, следовательно, не создана база для проведения индукции, и тогда бессмысленно применять теорему 2 ,так как и расширять-то, собственно, нечего.

Если не доказана теорема 2 , а доказана только теорема 1, то, хотя база для проведения индукции и создана, право расширения этой базы отсутствует.

Замечания .

    Иногда вторая часть доказательства опирается на справедливость утверждения не только для n =k , но и для n =k -1. В этом случае утверждение в первой части должно быть проверено для двух последующих значений n .

    Иногда утверждение доказывается не для всякого натурального n , а для n > m , где m – некоторое целое число. В этом случае в первой части доказательства утверждение проверяется для n =m +1, а если это необходимо, то для нескольких последующих значений n .

Подытожив сказанное, имеем: метод математической индукции позволяет в поисках общего закона испытывать возникающие при этом гипотезы, отбрасывать ложные и утверждать истинные.

Всем известна роль процессов обобщения результатов отдельных наблюдений и опытов (т.е. индукции) для эмпирических, экспериментальных наук. Математика же издавна считалась классическим образцом осуществления чисто дедуктивных методов, так как явно или неявно всегда подразумевается, что все математические предложения (кроме принятых за исходные - аксиом) доказываются, а конкретные применения этих предложений выводятся из доказательств, пригодных для общих случаев (дедукция).

Что же значит индукция в математике? Следует ли ее понимать как не вполне надежный способ, и как искать критерий надежности таких индуктивных методов? Или достоверность математических заключений той же природы, что и опытные обобщения экспериментальных наук, таких, что любой доказанный факт неплохо было бы еще и «проверить»? В действительности дело обстоит не так.

Индукции (наведение) на гипотезу играет в математике очень большую, но чисто эвристическую роль: она позволяет догадываться, каким должно быть решение. Но устанавливаются же математические предложения только дедуктивно. И метод математической индукции есть чисто дедуктивный метод доказательства. В самом деле, доказательство, проводимое этим методом, состоит из двух частей:

    так называемый «базис» – дедуктивное доказательство искомого предложения для одного (или нескольких) натурального числа;

    индукционный шаг, состоящий в дедуктивном доказательстве общего утверждения. Теорема именно доказывается для всех натуральных чисел. Из базиса, доказанного, например, для числа 0, мы получаем, по индукционному шагу, доказательство для числа 1, затем таким же образом для 2, для 3 …- и так утверждение может быть обосновано для любого натурального числа.

Иначе говоря, название «математическая индукция» обусловлено тем, что этот метод просто ассоциируется в нашем сознании с традиционными индуктивными умозаключениями (ведь базис действительно доказывается только для частного случая); индукционный шаг, в отличие от основанных на опыте критериев правдоподобности индуктивных умозаключений в естественных и общественных науках, есть общее утверждение, не нуждающееся ни в какой частной посылке и доказываемое по строгим канонам дедуктивных рассуждений. Поэтому математическую индукцию называют «полной» или «совершенной», так как она есть дедуктивный, совершенно надежный метод доказательства.

Примеры решений задач

Индукция в алгебре

Рассмотрим несколько примеров алгебраических задач, а также доказательство различных неравенств, решаемых с применением метода математической индукции.

Задача 1 . Угадать формулу для суммы и доказать её.

А(n )= 2  1 2 + 3 2 2 + …..+(n +1) n 2 .

Решение.

1. Преобразуем выражение для суммы А(n ):

A(n)= 2  1 2 + 3  2 2 + ….+ (n+1) n 2 = (1+1) 1 2 + (2+1) 2 2 + …. + (n+1) n 2 = =1  1 2 + 2  2 2 + …+n  n 2 + 1 2 + 2 2 +… +n 2 =1 3 + 2 3 +… +n 3 +1 2 + 2 2 +… +n 2 = В(n) + C(n), где B(n) = 1 3 + 2 3 + …..+ n 3 , C(n)= 1 2 + 2 2 +…+ n 2 .

2. Рассмотрим суммы C (n ) и B (n ).

а) С(n ) = 1 2 + 2 2 +…+ n 2 . Одна из часто встречающихся задач на метод математической индукции, доказать, что для любого натурального n , выполняется равенство

1 2 + 2 2 +…+ n 2 = (1)

Предположим, что (1) верно при всех n N .

б) B(n) = 1 3 + 2 3 + …..+ n 3 . Пронаблюдаем, как изменяются значения B (n ) в зависимости от n .

B(1) = 1 3 = 1 .

B(2) = 1 3 + 2 3 = 9 = 3 2 = (1 + 2) 2

B (3) = 1 3 + 2 3 + 3 3 = 36 =

Таким образом, можно предположить, что
B (n ) = (1 + 2 + ….+ n ) 2 =
(2)

в) В результате для суммы А(n ) получаем

А(n ) = =

= (*)

3. Докажем полученную формулу (*) методом математической индукции.

а) проверим справедливость равенства (*) при n = 1.

А(1) = 2=2,

Очевидно, что формула (*) при n = 1 верна.

б) предположим, что формула (*) верна при n=k , где k N, то есть выполняется равенство

A(k)=

Исходя из предположения, докажем справедливость формулы при n =k +1. Действительно,

A (k+1 )=

Так как формула (*) верна при n =1, и из предположения, что она верна при некотором натуральном k , следует ее справедливость при n =k +1, на основании принципа математической индукции заключаем, что равенство


выполняется при всяком натуральном n .

Задача 2.

Вычислить сумму 1-2 + 3-4 +…(-1) n -1 n .

Решение.

    Выпишем последовательно значения сумм при различных значениях n .

A(1)=1, A(2)=1-2= -1, A(3)=1-2+3=2, A(4)=1-2+3-4= -2,

A (5)=1-2+3-4+5=3, A (6)=1-2+3-4+5-6= -3.

Наблюдая закономерность, можем предположить, что A (n )= - при четных n и A (n )=
при нечетных n . Объединим оба результата в единую формулу:

A (n ) =
, где r – остаток от деления n на 2.

Иr , очевидно, определяется следующим правилом

0, если n – чётное,

r =

1, если n – нечётное.

Тогда r (можно догадаться) представимо в виде:

Окончательно получим формулу для A (n ):

A (n )=

(*)

Докажем выполнение равенства (*) при всех n N методом математической индукции.

2. а) Проверим равенство (*) при n =1. А(1) = 1=

Равенство справедливо

б) Предположим, что равенство

1-2+3-4+…+(-1) n-1 n =

верно при n =k . Докажем, что оно справедливо и при n =k +1, то есть

A (k +1)=

В самом деле,

A(k+1)=A(k)+(-1) k (k+1) =

=

Что и требовалось доказать.

Метод математической индукции применяется также для решения задач на делимость.

Задача 3.

Доказать, что число N (n )=n 3 + 5n делится на 6 при любом натуральном n.

Доказательство.

    При n =1 число N (1)=6 и потому утверждение справедливо.

    Пусть при некотором натуральном k число N (k )=k 3 +5k делится на 6. Докажем, что N (k +1)= (k +1) 3 + 5(k +1) делится на 6. Действительно, имеем
    N (k +1)= (k +1) 3 + 5(k +1)=(k 3 +5k )+3k (k +1)+6.

Поскольку k и k +1 - рядом стоящие натуральные числа, то одно из них обязательно четно, поэтому выражение 3k (k +1) делится на 6. Таким образом, получаем, что N (k +1) также делится на 6. Вывод число N (n )=n 3 + 5n делится на 6 при любом натуральном n.

Рассмотрим решение более сложной задачи на делимость, когда метод полной математической индукции приходится применять несколько раз.

Задача 4.

Доказать, что при любом натуральном n число
не делится нацело на число 2 n +3 .

Доказательство.


Представим
в виде произведения
=

= (*)

По предположению первый множитель в (*) не делится нацело на число 2 k +3 , то есть в представлении составного числа
в виде произведения простых чисел число 2 повторяется не более чем (k +2) раза. Таким образом, чтобы доказать, что число
не делится нацело на 2 k +4 , надо доказать, что
не делится на 4.

Для доказательства этого утверждения докажем вспомогательное утверждение: для любого натурального n число 3 2 n +1 не делится на 4. Для n =1 утверждение очевидно, так как 10 не делится на 4 без остатка. При предположении, что 3 2 k +1 не делится на 4, докажем, что и 3 2(k +1) +1 не делится
на 4. Представим последнее выражение в виде суммы:

3 2(k+1) +1=3 2k+2 +1=3 2k * 9+1=(3 2k +1)+8 * 3 2k . Второе слагаемое суммы делится на 4 нацело, а первое не делится. Следовательно, вся сумма не делится на 4 без остатка. Вспомогательное утверждение доказано.

Теперь ясно, что
не делится на 4, так как число 2 k является четным числом.

Окончательно получаем, что число
не делится нацело на число 2 n +3 ни при каком натуральном n .

Рассмотрим теперь пример применения индукции к доказательству неравенств.

Задача 5.

При каких натуральных n справедливо неравенство 2 n > 2n + 1?

Решение.

1. При n =1 2 1 < 2*1+1,

при n =2 2 2 < 2*2+1,

при n =3 2 3 > 2*3+1,

при n =4 2 4 > 2*4+1.

По-видимому, неравенство справедливо при любом натуральном n 3. Докажем это утверждение.

2. При n =3 справедливость неравенства уже показана. Пусть теперь неравенство справедливо при n =k , где k - некоторое натуральное число, не меньшее 3, т.е.

2 k > 2k +1 (*)

Докажем, что тогда неравенство справедливо и при n =k +1, то есть 2 k +1 >2(k +1)+1. Умножим (*) на 2, получим 2 k +1 >4k +2. Сравним выражения 2(k +1)+1 и 4k +2.

4k+2-(2(k+1)+1)=2k-1. Очевидно, что 2k -1>0 при любом натуральном k . Тогда 4k +2>2(k +1)+1, т.е. 2 k +1 >2(k +1)+1. Утверждение доказано.

Задача 6.

Неравенство для среднего арифметического и среднего геометрического n неотрицательных чисел (неравенство Коши). , получим =

Если хотя бы одно из чисел
равно нулю, то неравенство (**) также справедливо.

Заключение.

При выполнении работы я изучила суть метода математической индукции и его доказательство. В работе представлены задачи, в которых большую роль сыграла неполная индукция, наводящая на правильное решение, и затем проведено доказательство, полученное с помощью метода математической индукции.

Литература.

    Болтянский В.Г., Сидоров Ю.В., Шабурин М.И. Лекции и задачи по элементарной математике; Наука, 1974.

    Виленкин Н.Я. , Шварцбурд С.И. Математический анализ.-
    М.: Просвещение, 1973.

    Галицкий М.Л., Мошкович М.М, Шварцбурд С.И. Углубленное изучение курса алгебры и математического анализа.- М.: Просвещение, 1990.

    Потапов М.К., Александров В.В., Пасиченко П.И. Алгебра и анализ элементарных функций.- М.: Наука, 1980.

    Соминский И.С., Головина М.Л., Яглом И.М. О математической индукции.- М.: Наука, 1967.


Одним из самых важных методов математических доказательств по праву является метод математической индукции . Подавляющее большинство формул, относящихся ко всем натуральным числам n , могут быть доказаны методом математической индукции (к примеру, формула суммы n первых членов арифметической прогрессии , формула бинома Ньютона и т.п.).

В этой статье сначала остановимся на основных понятиях, далее рассмотрим сам метод математической индукции и разберем примеры его применения при доказательстве равенств и неравенств.

Навигация по странице.

Индукция и дедукция.

Индукцией называют переход от частных утверждений к общим. Напротив, переход от общих утверждений к частным называется дедукцией.

Пример частного утверждения: 254 делится на 2 без остатка.

Из этого частного утверждения можно сформулировать массу более общих утверждений, причем как истинных так и ложных. К примеру, более общее утверждение, что все целые числа, оканчивающиеся четверкой, делятся на 2 без остатка, является истинным, а утверждение, что все трехзначные числа делятся на 2 без остатка, является ложным.

Таким образом, индукция позволяет получить множество общих утверждений на основе известных или очевидных фактов. А метод математической индукции призван определить справедливость полученных утверждений.

В качестве примера, рассмотрим числовую последовательность: , n – произвольное натуральное число. Тогда последовательность сумм первых n элементов этой последовательности будет следующая

Исходя из этого факта, по индукции можно утверждать, что .

Доказательство этой формулы приведем .

Метод математической индукции.

В основе метода математической индукции лежит принцип математической индукции .

Он заключается в следующем: некоторое утверждение справедливо для всякого натурального n , если

  1. оно справедливо для n = 1 и
  2. из справедливости утверждения для какого-либо произвольного натурального n = k следует его справедливость для n = k+1 .

То есть, доказательство по методу математической индукции проводится в три этапа:

  1. во-первых, проверятся справедливость утверждения для любого натурального числа n (обычно проверку делают для n = 1 );
  2. во-вторых, предполагается справедливость утверждения при любом натуральном n=k ;
  3. в-третьих, доказывается справедливость утверждения для числа n=k+1 , отталкиваясь от предположения второго пункта.

Примеры доказательств уравнений и неравенств методом математической индукции.

Вернемся к предыдущему примеру и докажем формулу .

Доказательство.

Метод математической индукции предполагает доказательство в три пункта.

Таким образом, выполнены все три шага метода математической индукции и тем самым доказано наше предположение о формуле .

Давайте рассмотрим тригонометрическую задачу.

Пример.

Докажите тождество .

Решение.

Во-первых, проверяем справедливость равенства при n = 1 . Для этого нам понадобятся основные формулы тригонометрии.

То есть, равенство верно для n = 1 .

Во-вторых, предположим, что равенство верно для n = k , то есть справедливо тождество

В-третьих, переходим к доказательству равенства для n = k+1 , основываясь на втором пункте.

Так как по формуле из тригонометрии

то

Доказательство равенства из третьего пункта завершено, следовательно, исходное тождество доказано методом математической индукции.

Может быть доказана методом математической индукции.

Пример доказательства неравенства методом математической индукции можете посмотреть в разделе метод наименьших квадратов при выводе формул для нахождения коэффициентов аппроксимации.

Список литературы.

  • Соминский И.С., Головина Л.И., Яглом И.М. О математической индукции.

Вступление

Основная часть

1. Полная и неполная индукция

2. Принцип математической индукции

3. Метод математической индукции

4. Решение примеров

5. Равенства

6. Деление чисел

7. Неравенства

Заключение

Список использованной литературы

Вступление

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом – частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.

Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно.

Хотя и выросла область применения метода математической индукции, в школьной программе ему отводится мало времени. Ну, скажите, что полезного человеку принесут те два-три урока, за которые он услышит пять слов теории, решит пять примитивных задач, и, в результате получит пятёрку за то, что он ничего не знает.

А ведь это так важно - уметь размышлять индуктивно.

Основная часть

По своему первоначальному смыслу слово “индукция” применяется к рассуждениям, при помощи которых получают общие выводы, опираясь на ряд частных утверждений. Простейшим методом рассуждений такого рода является полная индукция. Вот пример подобного рассуждения.

Пусть требуется установить, что каждое натуральное чётное число n в пределах 4< n < 20 представимо в виде суммы двух простых чисел. Для этого возьмём все такие числа и выпишем соответствующие разложения:

4=2+2; 6=3+3; 8=5+3; 10=7+3; 12=7+5;

14=7+7; 16=11+5; 18=13+5; 20=13+7.

Эти девять равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых.

Таким образом, полная индукция заключается в том, что общее утверждение доказывается по отдельности в каждом из конечного числа возможных случаев.

Иногда общий результат удаётся предугадать после рассмотрения не всех, а достаточно большого числа частных случаев (так называемая неполная индукция).

Результат, полученный неполной индукцией, остается, однако, лишь гипотезой, пока он не доказан точным математическим рассуждением, охватывающим все частные случаи. Иными словами, неполная индукция в математике не считается законным методом строгого доказательства, но является мощным методом открытия новых истин.

Пусть, например, требуется найти сумму первых n последовательных нечётных чисел. Рассмотрим частные случаи:

1+3+5+7+9=25=5 2

После рассмотрения этих нескольких частных случаев напрашивается следующий общий вывод:

1+3+5+…+(2n-1)=n 2

т.е. сумма n первых последовательных нечётных чисел равна n 2

Разумеется, сделанное наблюдение ещё не может служить доказательством справедливости приведённой формулы.

Полная индукция имеет в математике лишь ограниченное применение. Многие интересные математические утверждения охватывают бесконечное число частных случаев, а провести проверку для бесконечного числа случаев мы не в состоянии. Неполная же индукция часто приводит к ошибочным результатам.

Во многих случаях выход из такого рода затруднений заключается в обращении к особому методу рассуждений, называемому методом математической индукции. Он заключается в следующем.

Пусть нужно доказать справедливость некоторого утверждения для любого натурального числа n (например нужно доказать, что сумма первых n нечётных чисел равна n 2). Непосредственная проверка этого утверждения для каждого значения n невозможна, поскольку множество натуральных чисел бесконечно. Чтобы доказать это утверждение, проверяют сначала его справедливость для n=1. Затем доказывают, что при любом натуральном значении k из справедливости рассматриваемого утверждения при n=k вытекает его справедливость и при n=k+1.

Тогда утверждение считается доказанным для всех n. В самом деле, утверждение справедливо при n=1. Но тогда оно справедливо и для следующего числа n=1+1=2. Из справедливости утверждения для n=2 вытекает его справедливость для n=2+

1=3. Отсюда следует справедливость утверждения для n=4 и т.д. Ясно, что, в конце концов, мы дойдём до любого натурального числа n. Значит, утверждение верно для любого n.

Обобщая сказанное, сформулируем следующий общий принцип.

Принцип математической индукции.

Если предложение А(n ), зависящее от натурального числа n , истинно для n =1 и из того, что оно истинно для n=k (где k -любое натуральное число), следует, что оно истинно и для следующего числа n=k+1 , то предположение А(n ) истинно для любого натурального числа n .

В ряде случаев бывает нужно доказать справедливость некоторого утверждения не для всех натуральных чисел, а лишь для n>p, где p-фиксированное натуральное число. В этом случае принцип математической индукции формулируется следующим образом. Если предложение А(n ) истинно при n=p и если А(k ) Þ А(k+1) для любого k>p, то предложение А(n) истинно для любого n>p.

Доказательство по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть доказательства, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k (предположение индукции), т.е. доказывают, что А(k)ÞA(k+1).

ПРИМЕР 1

Доказать, что 1+3+5+…+(2n-1)=n 2 .

Решение: 1) Имеем n=1=1 2 . Следовательно,

утверждение верно при n=1, т.е. А(1) истинно.

2) Докажем, что А(k)ÞA(k+1).

Пусть k-любое натуральное число и пусть утверж-дение справедливо для n=k, т.е.

1+3+5+…+(2k-1)=k 2 .

Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что

1+3+5+…+(2k+1)=(k+1) 2 .

В самом деле,

1+3+5+…+(2k-1)+(2k+1)=k 2 +2k+1=(k+1) 2 .

Итак, А(k)ÞА(k+1). На основании принципа математической индукции заключаем, что предпо-ложение А(n) истинно для любого nÎN.

ПРИМЕР 2

Доказать, что

1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х¹1

Решение: 1) При n=1 получаем

1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1

следовательно, при n=1 формула верна; А(1) ис-тинно.

2) Пусть k-любое натуральное число и пусть формула верна при n=k, т.е.

1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1).

Докажем, что тогда выполняется равенство

1+х+х 2 +х 3 +…+х k +x k+1 =(x k+2 -1)/(х-1).

В самом деле

1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k)+x k+1 =

=(x k+1 -1)/(x-1)+x k+1 =(x k+2 -1)/(x-1).

Итак, А(k)ÞA(k+1). На основании принципа математической индукции заключаем, что форму-ла верна для любого натурального числа n.

ПРИМЕР 3

Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2.

Решение: 1) При n=3 утверждение спра-

А 3 ведливо, ибо в треугольнике

 А 3 =3(3-3)/2=0 диагоналей;

А 2 А(3) истинно.

2) Предположим, что во всяком

выпуклом k-угольнике имеет-

А 1 ся А k =k(k-3)/2 диагоналей.

А k Докажем, что тогда в выпуклом

(k+1)-угольнике число

диагоналей А k+1 =(k+1)(k-2)/2.

Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-уголь-ник. Проведём в нём диагональ A 1 A k . Чтобы под-считать общее число диагоналей этого (k+1)-уголь-ника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k .

Таким образом,

 k+1 = k +(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2.

Итак, А(k)ÞA(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

ПРИМЕР 4

Доказать, что при любом n справедливо утвер-ждение:

1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6.

Решение: 1) Пусть n=1, тогда

Х 1 =1 2 =1(1+1)(2+1)/6=1.

Значит, при n=1 утверждение верно.

2) Предположим, что n=k

Х k =k 2 =k(k+1)(2k+1)/6.

3) Рассмотрим данное утвержде-ние при n=k+1

X k+1 =(k+1)(k+2)(2k+3)/6.

X k+1 =1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =k(k+1)(2k+1)/6+ +(k+1) 2 =(k(k+1)(2k+1)+6(k+1) 2)/6=(k+1)(k(2k+1)+

6(k+1))/6=(k+1)(2k 2 +7k+6)/6=(k+1)(2(k+3/2)(k+

2))/6=(k+1)(k+2)(2k+3)/6.

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математиче-ской индукции, утверждение верно для любого на-турального n.

ПРИМЕР 5

Доказать, что для любого натурального n спра-ведливо равенство:

1 3 +2 3 +3 3 +…+n 3 =n 2 (n+1) 2 /4.

Решение: 1) Пусть n=1.

Тогда Х 1 =1 3 =1 2 (1+1) 2 /4=1.

Мы видим, что при n=1 утверждение верно.

2) Предположим, что равенство верно при n=k