Ряды Фурье. Примеры решений. Достаточные условия представимости функции интегралом фурье Синус и косинус преобразование интеграл фурье примеры

Которые уже порядком поднадоели. И я чувствую, что настал момент, когда из стратегических запасов теории пора извлечь новые консервы. Нельзя ли разложить функцию в ряд как-нибудь по-другому? Например, выразить отрезок прямой линии через синусы и косинусы? Кажется невероятным, но такие, казалось бы, далекие друг от друга функции поддаются
«воссоединению». Помимо примелькавшихся степеней в теории и практике существуют и другие подходы к разложению функции в ряд.

На данном уроке мы познакомимся с тригонометрическим рядом Фурье, коснёмся вопроса его сходимости и суммы и, конечно же, разберём многочисленные примеры на разложение функций в ряд Фурье. Искренне хотелось назвать статью «Ряды Фурье для чайников», но это было бы лукавством, поскольку для решения задач потребуются знания других разделов математического анализа и некоторый практический опыт. Поэтому преамбула будет напоминать подготовку космонавтов =)

Во-первых, к изучению материалов страницы следует подойти в отличной форме. Выспавшимися, отдохнувшими и трезвыми. Без сильных эмоций по поводу сломанной лапы хомячка и навязчивых мыслей о тяготах жизни аквариумных рыбок. Ряд Фурье не сложен с точки зрения понимания, однако практические задания требуют просто повышенной концентрации внимания – в идеале следует полностью отрешиться от внешних раздражителей. Ситуация усугубляется тем, что не существует лёгкого способа проверки решения и ответа. Таким образом, если ваше самочувствие ниже среднего, то лучше заняться чем-нибудь попроще. Правда.

Во-вторых, перед полётом в космос необходимо изучить приборную панель космического корабля. Начнём со значений функций, которые должны щёлкаться на автомате:

При любом натуральном значении :

1) . И в самом деле, синусоида «прошивает» ось абсцисс через каждое «пи»:
. В случае отрицательных значений аргумента результат, само собой, будет таким же: .

2) . А вот это знали не все. Косинус «пи эн» представляет собой эквивалент «мигалки»:

Отрицательный аргумент дела не меняет: .

Пожалуй, достаточно.

И, в-третьих, уважаемый отряд космонавтов, необходимо уметь… интегрировать .
В частности, уверенно подводить функцию под знак дифференциала , интегрировать по частям и быть в ладах с формулой Ньютона-Лейбница . Начнём важные предполётные упражнения. Категорически не рекомендую пропускать, чтобы потом не плющило в невесомости:

Пример 1

Вычислить определённые интегралы

где принимает натуральные значения.

Решение : интегрирование проводится по переменной «икс» и на данном этапе дискретная переменная «эн» считается константой. Во всех интегралах подводим функцию под знак дифференциала :

Короткая версия решения, к которой хорошо бы пристреляться, выглядит так:

Привыкаем:

Четыре оставшихся пункта самостоятельно. Постарайтесь добросовестно отнестись к заданию и оформить интегралы коротким способом. Образцы решений в конце урока.

После КАЧЕСТВЕННОГО выполнения упражнений надеваем скафандры
и готовимся к старту!

Разложение функции в ряд Фурье на промежутке

Рассмотрим некоторую функцию , которая определена по крайне мере на промежутке (а, возможно, и на бОльшем промежутке). Если данная функция интегрируема на отрезке , то её можно разложить в тригонометрический ряд Фурье :
, где – так называемые коэффициенты Фурье .

При этом число называют периодом разложения , а число – полупериодом разложения .

Очевидно, что в общем случае ряд Фурье состоит из синусов и косинусов:

Действительно, распишем его подробно:

Нулевой член ряда принято записывать в виде .

Коэффициенты Фурье рассчитываются по следующим формулам:

Прекрасно понимаю, что начинающим изучать тему пока малопонятны новые термины: период разложения , полупериод , коэффициенты Фурье и др. Без паники, это не сравнимо с волнением перед выходом в открытый космос. Во всём разберёмся в ближайшем примере, перед выполнением которого логично задаться насущными практическими вопросами:

Что нужно сделать в нижеследующих заданиях?

Разложить функцию в ряд Фурье. Дополнительно нередко требуется изобразить график функции , график суммы ряда , частичной суммы и в случае изощрённых профессорский фантазий – сделать что-нибудь ещё.

Как разложить функцию в ряд Фурье?

По существу, нужно найти коэффициенты Фурье , то есть, составить и вычислить три определённых интеграла .

Пожалуйста, перепишите общий вид ряда Фурье и три рабочие формулы к себе в тетрадь. Я очень рад, что у некоторых посетителей сайта прямо на моих глазах осуществляется детская мечта стать космонавтом =)

Пример 2

Разложить функцию в ряд Фурье на промежутке . Построить график , график суммы ряда и частичной суммы .

Решение : первая часть задания состоит в разложении функции в ряд Фурье.

Начало стандартное, обязательно записываем, что:

В данной задаче период разложения , полупериод .

Разложим функцию в ряд Фурье на промежутке :

Используя соответствующие формулы, найдём коэффициенты Фурье . Теперь нужно составить и вычислить три определённых интеграла . Для удобства я буду нумеровать пункты:

1) Первый интеграл самый простой, однако и он уже требует глаз да глаз:

2) Используем вторую формулу:

Данный интеграл хорошо знаком и берётся он по частям :

При нахождении использован метод подведения функции под знак дифференциала .

В рассматриваемом задании сподручнее сразу использовать формулу интегрирования по частям в определённом интеграле :

Пара технических замечаний. Во-первых, после применения формулы всё выражение нужно заключить в большие скобки , так как перед исходным интегралом находится константа . Не теряем её ! Скобки можно раскрыть на любом дальнейшем шаге, я это сделал в самую последнюю очередь. В первом «куске» проявляем крайнюю аккуратность в подстановке, как видите, константа не при делах, и пределы интегрирования подставляются в произведение . Данное действие выделено квадратными скобками. Ну а интеграл второго «куска» формулы вам хорошо знаком из тренировочного задания;-)

И самое главное – предельная концентрация внимания!

3) Ищем третий коэффициент Фурье:

Получен родственник предыдущего интеграла, который тоже интегрируется по частям :

Этот экземпляр чуть сложнее, закомментирую дальнейшие действия пошагово:

(1) Выражение полностью заключаем в большие скобки . Не хотел показаться занудой, слишком уж часто теряют константу .

(2) В данном случае я немедленно раскрыл эти большие скобки. Особое внимание уделяем первому «куску»: константа курит в сторонке и не участвует в подстановке пределов интегрирования ( и ) в произведение . Ввиду загромождённости записи это действие снова целесообразно выделить квадратными скобками. Со вторым «куском» всё проще: здесь дробь появилась после раскрытия больших скобок, а константа – в результате интегрирования знакомого интеграла;-)

(3) В квадратных скобках проводим преобразования , а в правом интеграле – подстановку пределов интегрирования.

(4) Выносим «мигалку» из квадратных скобок: , после чего раскрываем внутренние скобки: .

(5) Взаимоуничтожаем 1 и –1 в скобках и проводим окончательные упрощения.

Наконец-то найдены все три коэффициента Фурье:

Подставим их в формулу :

При этом не забываем разделить пополам. На последнем шаге константа («минус два»), не зависящая от «эн», вынесена за пределы суммы.

Таким образом, мы получили разложение функции в ряд Фурье на промежутке :

Изучим вопрос сходимости ряда Фурье. Я объясню теорию, в частности теорему Дирихле , буквально «на пальцах», поэтому если вам необходимы строгие формулировки, пожалуйста, обратитесь к учебнику по математическому анализу (например, 2-й том Бохана; или 3-й том Фихтенгольца, но в нём труднее) .

Во второй части задачи требуется изобразить график , график суммы ряда и график частичной суммы .

График функции представляет собой обычную прямую на плоскости , которая проведена чёрным пунктиром:

Разбираемся с суммой ряда . Как вы знаете, функциональные ряды сходятся к функциям. В нашем случае построенный ряд Фурье при любом значении «икс» сойдётся к функции , которая изображена красным цветом. Данная функция терпит разрывы 1-го рода в точках , но определена и в них (красные точки на чертеже)

Таким образом: . Легко видеть, что заметно отличается от исходной функции , именно поэтому в записи ставится значок «тильда», а не знак равенства.

Изучим алгоритм, по которому удобно строить сумму ряда.

На центральном интервале ряд Фурье сходится к самой функции (центральный красный отрезок совпадает с чёрным пунктиром линейной функции).

Теперь немного порассуждаем о природе рассматриваемого тригонометрического разложения. В ряд Фурье входят только периодические функции (константа, синусы и косинусы), поэтому сумма ряда тоже представляет собой периодическую функцию .

Что это значит в нашем конкретном примере? А это обозначает то, что сумма ряда непременно периодична и красный отрезок интервала обязан бесконечно повторяться слева и справа.

Думаю, сейчас окончательно прояснился смысл фразы «период разложения ». Упрощённо говоря, через каждые ситуация вновь и вновь повторяется.

На практике обычно достаточно изобразить три периода разложения, как это сделано на чертеже. Ну и ещё «обрубки» соседних периодов – чтобы было понятно, что график продолжается.

Особый интерес представляют точки разрыва 1-го рода . В таких точках ряд Фурье сходится к изолированным значениям, которые расположены ровнёхонько посередине «скачка» разрыва (красные точки на чертеже). Как узнать ординату этих точек? Сначала найдём ординату «верхнего этажа»: для этого вычислим значение функции в крайней правой точке центрального периода разложения: . Чтобы вычислить ординату «нижнего этажа» проще всего взять крайнее левое значение этого же периода: . Ордината среднего значения – это среднее арифметическое суммы «верха и низа»: . Приятным является тот факт, что при построении чертежа вы сразу увидите, правильно или неправильно вычислена середина.

Построим частичную сумму ряда и заодно повторим смысл термина «сходимость». Мотив известен ещё из урока о сумме числового ряда . Распишем наше богатство подробно:

Чтобы составить частичную сумму необходимо записать нулевой + ещё два члена ряда. То есть,

На чертеже график функции изображен зелёным цветом, и, как видите, он достаточно плотно «обвивает» полную сумму . Если рассмотреть частичную сумму из пяти членов ряда , то график этой функции будет ещё точнее приближать красные линии, если сто членов – то «зелёный змий» фактически полностью сольётся с красными отрезками и т.д. Таким образом, ряд Фурье сходится к своей сумме .

Интересно отметить, что любая частичная сумма – это непрерывная функция , однако полная сумма ряда всё же разрывна.

На практике не так уж редко требуется построить и график частичной суммы. Как это сделать? В нашем случае необходимо рассмотреть функцию на отрезке , вычислить её значения на концах отрезка и в промежуточных точках (чем больше точек рассмотрите – тем точнее будет график). Затем следует отметить данные точки на чертеже и аккуратно изобразить график на периоде , после чего «растиражировать» его на соседние промежутки. А как иначе? Ведь приближение – это тоже периодическая функция… …чем-то мне её график напоминает ровный ритм сердца на дисплее медицинского прибора.

Выполнять построение, конечно, не сильно удобно, так как и приходится проявлять сверхаккуратность, выдерживая точность не меньше, чем до половины миллиметра. Впрочем, читателей, которые не в ладах с черчением, обрадую – в «реальной» задаче выполнять чертёж нужно далеко не всегда, где-то в 50% случаев требуется разложить функцию в ряд Фурье и всё.

После выполнения чертежа завершаем задание:

Ответ :

Во многих задачах функция терпит разрыв 1-го рода прямо на периоде разложения:

Пример 3

Разложить в ряд Фурье функцию , заданную на отрезке . Начертить график функции и полной суммы ряда.

Предложенная функция задана кусочным образом (причём, заметьте, только на отрезке ) и терпит разрыв 1-го рода в точке . Можно ли вычислить коэффициенты Фурье? Без проблем. И левая и правая части функции интегрируемы на своих промежутках, поэтому интегралы в каждой из трёх формул следует представить в виде суммы двух интегралов. Посмотрим, например, как это делается у нулевого коэффициента:

Второй интеграл оказался равным нулю, что убавило работы, но так бывает далеко не всегда.

Аналогично расписываются два других коэффициента Фурье.

Как изобразить сумму ряда? На левом интервале чертим отрезок прямой , а на интервале – отрезок прямой (жирно-жирно выделяем участок оси ). То есть, на промежутке разложения сумма ряда совпадает с функцией везде, кроме трёх «нехороших» точек. В точке разрыва функции ряд Фурье сойдётся к изолированному значению, которое располагается ровно посередине «скачка» разрыва. Его нетрудно увидеть и устно: левосторонний предел: , правосторонний предел: и, очевидно, что ордината средней точки равна 0,5.

В силу периодичности суммы , картинку необходимо «размножить» на соседние периоды, в частности изобразить то же самое на интервалах и . При этом, в точках ряд Фурье сойдётся к срединным значениям.

По сути-то ничего нового здесь нет.

Постарайтесь самостоятельно справиться с данной задачей. Примерный образец чистового оформления и чертёж в конце урока.

Разложение функции в ряд Фурье на произвольном периоде

Для произвольного периода разложения , где «эль» – любое положительное число, формулы ряда Фурье и коэффициентов Фурье отличаются немного усложнённым аргументом синуса и косинуса:

Если , то получаются формулы промежутка , с которых мы начинали.

Алгоритм и принципы решения задачи полностью сохраняются, но возрастает техническая сложность вычислений:

Пример 4

Разложить функцию в ряд Фурье и построить график суммы.

Решение : фактически аналог Примера № 3 с разрывом 1-го рода в точке . В данной задаче период разложения , полупериод . Функция определена только на полуинтервале , но это не меняет дела – важно, что оба куска функции интегрируемы.

Разложим функцию в ряд Фурье:

Поскольку функция разрывна в начале координат, то каждый коэффициент Фурье очевидным образом следует записать в виде суммы двух интегралов:

1) Первый интеграл распишу максимально подробно:

2) Тщательным образом вглядываемся в поверхность Луны:

Второй интеграл берём по частям :

На что следует обратить пристальное внимание, после того, как мы звёздочкой открываем продолжение решения?

Во-первых, не теряем первый интеграл , где сразу же выполняем подведение под знак дифференциала . Во-вторых, не забываем злополучную константу перед большими скобками и не путаемся в знаках при использовании формулы . Большие скобки, всё-таки удобнее раскрывать сразу же на следующем шаге.

Остальное дело техники, затруднения может вызвать только недостаточный опыт решенияинтегралов.

Да, не зря именитые коллеги французского математика Фурье возмущались – как это тот посмел раскладывать функции в тригонометрические ряды?! =) К слову, наверное, всем интересен практический смысл рассматриваемого задания. Сам Фурье работал над математической моделью теплопроводности, а впоследствии ряд, названный его именем стал применяться для исследования многих периодических процессов, коих в окружающем мире видимо-невидимо. Сейчас, кстати, поймал себя на мысли, что не случайно сравнил график второго примера с периодическим ритмом сердца. Желающие могут ознакомиться с практическим применением преобразования Фурье в сторонних источниках. …Хотя лучше не надо – будет вспоминаться, как Первая Любовь =)

3) Учитывая неоднократно упоминавшиеся слабые звенья, разбираемся с третьим коэффициентом:

Интегрируем по частям:

Подставим найдённые коэффициенты Фурье в формулу , не забывая поделить нулевой коэффициент пополам:

Построим график суммы ряда. Кратко повторим порядок действий: на интервале строим прямую , а на интервале – прямую . При нулевом значении «икс» ставим точку посередине «скачка» разрыва и «тиражируем» график на соседние периоды:


На «стыках» периодов сумма также будет равна серединам «скачка» разрыва .

Готово. Напоминаю, что сама функция по условию определена только на полуинтервале и, очевидно, совпадает с суммой ряда на интервалах

Ответ :

Иногда кусочно-заданная функция бывает и непрерывна на периоде разложения. Простейший образец: . Решение (см. 2-й том Бохана) такое же, как и двух предыдущих примерах: несмотря на непрерывность функции в точке , каждый коэффициент Фурье выражается суммой двух интегралов.

На промежутке разложения точек разрыва 1-го рода и/или точек «стыка» графика может быть и больше (две, три и вообще любое конечное количество). Если функция интегрируема на каждой части, то она также разложима в ряд Фурье. Но из практического опыта такую жесть что-то не припоминаю. Тем не менее, встречаются более трудные задания, чем только что рассмотренное, и в конце статьи для всех желающих есть ссылки на ряды Фурье повышенной сложности.

А пока расслабимся, откинувшись в креслах и созерцая бескрайние звёздные просторы:

Пример 5

Разложить функцию в ряд Фурье на промежутке и построить график суммы ряда.

В данной задаче функция непрерывна на полуинтервале разложения, что упрощает решение. Всё очень похоже на Пример № 2. С космического корабля никуда не деться – придётся решать =) Примерный образец оформления в конце урока, график прилагается.

Разложение в ряд Фурье чётных и нечётных функций

С чётными и нечётными функциями процесс решения задачи заметно упрощается. И вот почему. Вернёмся к разложению функции в ряд Фурье на периоде «два пи» и произвольном периоде «два эль» .

Предположим, что наша функция чётна. Общий же член ряда, как вы видите, содержит чётные косинусы и нечётные синусы. А если мы раскладываем ЧЁТНУЮ функцию, то зачем нам нечётные синусы?! Давайте обнулим ненужный коэффициент: .

Таким образом, чётная функция раскладывается в ряд Фурье только по косинусам :

Поскольку интегралы от чётных функций по симметричному относительно нуля отрезку интегрирования можно удваивать, то упрощаются и остальные коэффициенты Фурье.

Для промежутка :

Для произвольного промежутка:

К хрестоматийным примерам, которые есть практически в любом учебнике по матанализу, относятся разложения чётных функций . Кроме того, они неоднократно встречались и в моей личной практике:

Пример 6

Дана функция . Требуется:

1) разложить функцию в ряд Фурье с периодом , где – произвольное положительное число;

2) записать разложение на промежутке , построить функцию и график полной суммы ряда .

Решение : в первом пункте предлагается решить задачу в общем виде, и это очень удобно! Появится надобность – просто подставьте своё значение.

1) В данной задаче период разложения , полупериод . В ходе дальнейших действий, в частности при интегрировании, «эль» считается константой

Функция является чётной, а значит, раскладывается в ряд Фурье только по косинусам: .

Коэффициенты Фурье ищем по формулам . Обратите внимание на их безусловные преимущества. Во-первых, интегрирование проводится по положительному отрезку разложения, а значит, мы благополучно избавляемся от модуля , рассматривая из двух кусков только «икс». И, во-вторых, заметно упрощается интегрирование.

Два:

Интегрируем по частям:

Таким образом:
, при этом константу , которая не зависит от «эн», выносим за пределы суммы.

Ответ :

2) Запишем разложение на промежутке , для этого в общую формулу подставляем нужное значение полупериода :

Одним из мощных средств исследования задач математической физики является метод интегральных преобразований. Пусть функция f(x) задана на интервале (а, 6), конечном или бесконечном. Интегральным преобразованием функции f(x) называется функция где К(х, ш) - фиксированная для данного преобразования функция, называемая ядром преобразования (предполагается, что интеграл (*) существуете собственном или несобственном смысле). §1. Интеграл Фурье Всякая функция f(x), которая на отрезке [-f, I] удовлетворяет условиям разложимости в ряд Фурье, может быть на этом отрезке представлена тригонометрическим рядом Коэффициенты а*, и 6„ ряда (1) определяются по формулам Эйлера-Фурье: ПРЕОБРАЗОВАНИЕ ФУРЬЕ Интеграл Фурье Комплексная форма интеграла Преобразование Фурье Косинус и синус преобразования Амплитудный и фазовый спектры Свойства Приложения Ряд в правой части равенства (1) можно записать в иной форме. С этой целью внесем в него из формул (2) значения коэффициентов а» и оп, подведем под знаки интегралов cos ^ х и sin х (что возможно, поскольку переменной интегрирования является т) О) и используем формулу для косинуса разности. Будем иметь Если функция/(ж) первоначально была определена на интервале числовой оси, большем, чем отрезок [-1,1] (например, на всей оси), то разложение (3) воспроизведет значения этой функции только на отрезке [-1,1] и продолжит се на всю числовую ось как периодическую функцию с периодом 21 (рис. 1). Поэтому, если функция f(x) (вообще говоря, непериодическая) определена на всей числовой оси, в формуле (3) можно попытаться перейти к пределу при I +оо. При этом естественно потребовать выполнения следующих условий: 1. f(x) удовлетворяет условиям разложимости в ряд Фурье на любом конечном отрезке оси Ох\ 2. функция f(x) абсолютно интегрируема на всей числовой оси, При выполнении условия 2 первое слагаемое правой части равенства (3) при I -* +оо стремится к нулю. В самом деле, Попытаемся установить, во что перейдет в пределе при I +оо сумма в правой, части (3). Положим так, что Тогда сумма в правой части (3) примет вид В силу абсолютной сходимости интеграла эта сумма при больших I мало отличается от выражения которое напоминает интегральную сумму для функции переменного £ составленную для интервала (0, +оо) изменения Поэтому естественно ожидать, что при сумма (5) перейдет в интеграл Сдругой стороны, при фиксировано) из формулы (3) вытекает, что и мы получаем равенство Достаточное условие справедливости формулы (7) выражается следующей теоремой. Теорема 1. Если функция f(x) абсолютно интегрируема на всей числовой оси и имеет вместе со своей производной конечное число точек разрыва первого рода на любом отрезке [а, 6], то справедливо равенство При этом во всякой точке xq, являющейся точкой разрыва 1-го рода функции /(ж), значение интеграла в правой части (7) равно Формулу (7) называют интегральной формулой Фурье, а стоящий в ее правой части интеграл - интегралом Фурье. Если воспользоваться формулой дня косинуса разности, то формулу (7) можно записать в виде Функции а(£), Ь(£) являются аналогами соответствующих коэффициентов Фурье ап и Ьп 2тг-периодической функции, но последние определены для дискретных значений п, вто время как а(0> НО определеныдля непрерывных значений £ G (-оо, +оо). Комплексная форма интеграла Фурье Предполагая /(х) абсолютно интегрируемой на всей оси Ох, рассмотрим интеграл Этот интеграл равномерно сходится для, так как и потому представляет собой непрерывную и, очевидно, нечетную функцию от Но тогда С другой стороны, интеграл есть четная функция переменной так что Поэтому интегральную формулу Фурье можно записать так: Умножим равенство на мнимую единицу i и прибавим к равенству (10). Получим откуда, в силу формулы Эйлера будем иметь Это - комплексная форма интеграла Фурье. Здесь внешнее интегрирование по £ понимается в смысле главного значения по Коши: §2. Преобразование Фурье. Косинус- и синус-преобразования Фурье Пусть функция f(x) является кусочно-гладкой на любом конечном отрезке оси Ох и абсолютно интегрируема на всей оси. Определение. Функция откуда, в силу формулы Эйлера, будем иметь называется преобразованием Фурье функции /(г) (спектральной функцией). Это - интегральное преобразование функции /(г) на интервале (-оо,+оо) с ядром Используя интегральную формулу Фурье получаем Это так называемое обратное преобразование Фурье, дающее переход от F(£) к /(х). Иногда прямое преобразование Фурье задают так: Тогда обратное преобразование Фурье определится формулой Преобразование Фурье функции /(ж) определяют также следующим образом: ПРЕОБРАЗОВАНИЕ ФУРЬЕ Интеграл Фурье Комплексная форма интеграла Преобразование Фурье Косинус и синус преобразования Амплитудный и фазовый спектры Свойства Приложения Тогда, в свою очередь, При этом положение множителя ^ достаточно произвольно: он может входить либо в формулу (1"), либо в формулу (2"). Пример 1. Найти преобразование Фурье функции -4 Имеем Это равенство допуска ет дифференцирование по £ под знаком интеграла (получающийся после дифференцирования интеграл равномерно сходится, когда { принадлежит любому конечному отрезку): Интегрируя по частям, будем иметь Внеинтегральное слагаемое обращается в нуль, и мы получаем откуда (С - постоянная интегрирования). Полагая в (4) £ = 0, найдем С = F(0). В силу (3) имеем Известно, что В частности, для) получаем, что Пример 2 (разред кокдемсетора через сопропиление). Рассмотрим функцию 4 Для спектрам ыюй функции F(£) получаем Отсюда (рис.2). Условие абсолютной интегри-руемости функции f(x) на всей числовой оси является весьма жестким. Оно исключает, например, такие элементарные функции, как) = cos ж, f(x) = е1, для которых преобразования Фурье (в рассматриваемой здесь классической форме) не существует. Фурье-образ имеют только те функции, которые достаточно быстро стремятся к нулю при |х| -+ +оо (как в примерах 1 и 2). 2.1. Косинус- и синус-преобразования Фурье Используя формулу косинуса, разности, перепишем интегральную формулу Фурье в следующем виде: Пусть f(x) - четная функция. Тогда так что изравснства (5) имеем В случае нечетной f(x) аналогично получаем Если f(x) задана лишь на (0, -foo), то формула (6) продолжает f(x) на всю ось Ох четным образом, а формула (7) - нечетным. (7) Определение. Функция называется косинус-преобразованием Фурье функции f(x). Из (6) следует, что для четной функции f(x) Это означает, что f(x), в свою очередь, является косинус-преобразованием для Fc(£). Иными словами, функции / и Fc являются взаимными косинус-преобразованиями. Определение. Функция называется синус-преобразованием Фурье функции f(x). Из (7) получаем, что для нечетной функции f(x) т.е. f и Fs являются взаимными синус-преобразованиями. Пример 3 (прамоугольный импульс}. Пусть f(t) - четная функция, определенная следующим образом: (рис. 3). Воспользуемся полученным результатом для вычисления интеграла В силу формулы (9) имеем Рис.3 0 0 В точке t = 0 функция f(t) непрерывна и равна единице. Поэтому из (12") получим 2.2. Амплитудный и фазовый спектры интеграла Фурье Пусть периодическая с периодом 2т функция /(х) разлагается в ряд Фурье Это равенство можно записать в виде где - амплитуда колебания с частотой п, - фаза. На этом пути мы приходим к понятиям амплитудного и фазового спектров периодической функции. Для непериодической функции f{x), заданной на (-оо, +оо), при определенньк условиях оказывается возможным представить ее интегралом Фурье осуществляющим разложение этой функции по всем частотам (разложение по непрерывному спектру частот). Определение. Спектральной функцией, или спектральной плотностью интеграла Фурье, называется выражение (прямое преобразование Фурье функции f называется амплитудным спектром, а функция Ф«) = -агgSfc) - фазовым спектром функции /(«). Амплитудный спектр.А(£) служит мерой вклада частоты £ в функцию /(ж). Пример 4. Найти амплитудный и фазовый спектры функции 4 Находим спектральную функцию Отсюда Графики этих функций изображены на рис. 4. §3. Свойства преобразования Фурье 1. Линейность. Если и G(0 - преобразования Фурье функций /(х) и д(х) соответственно, то при любых постоянных а и р преобразованием Фурье функции a f{x) + р д(х) будет функция a Пользуясь свойством линейности интеграла, имеем Таким образом, преобразование Фурье есть линейный оператор. Обозначая его через будем писать. Если F(£) есть преобразование Фурье абсолютно интегрируемой на всей числовой оси функции /(ж), то F(() ограничена при всех. Пусть функция f(x) абсолютно интегрируема на всей оси - преобразование Фурье функции f(x). Тогда 3«fltsJ. Пусть f(x) - функция, допуска кнцэя преобразование Фурье, Л - дойств ительяов число. Фуниция fh(x) = f{z-h) называется сдвигом фунждии f{x). Пользуясь определен нем преобразования Фурье, показать, что Задача. Пусть функция f(z) имеет преобразование Фурье F(0> h - действительное число. Показать, что 3. Преобразование Фурье и ооерэции дифференцирования. Пусть абсолютно интегрируемая функция f(x) имеет производную f"(x), также абсолютно интегрируемую на всей оси Ох, так что /(я) стремится к нулю при |ж| -» +оо. Считая f"(x) гладкой функцией, запишем Интегрируя по частям, будем иметь Внеинтегральноеслагаемое обращается в нуль (так как, и мы получаем Таким образом, дифференцированию функции /(х) отвечает умножение ее образа Фурье ^П/] на множитель Если функция f(x) имеет глад*«е абсолютно интефируемые производные до порядка m включительно и все они, как и сама функция f(x), стремятся к нулю при то, интегрируя по частям нужное число раз, получим Преобразование Фурье очень полезно именно потому, что оно заменяет операцию дифференцирования операцией умножения на величину и тем самым упрощает задачуинтегрирования некоторых видов дифференциальных уравнений. Так как преобразование Фурье абсолютно интегрируемой функции f^k\x) есть ограниченная функция от (свойство 2), то из соотношения (2) получаем для следующую оценку: ПРЕОБРАЗОВАНИЕ ФУРЬЕ Интеграл Фурье Комплексная форма интеграла Преобразование Фурье Косинус и синус преобразования Амплитудный и фазовый спектры Свойства Приложения Из этой оценки следует: чем больше функция f(x) имеет абсолютно интегрируемых производных, тем быстрее ее преобразование Фурье стремится к нулю при. Замечание. Условие является достаточно естественным, поскольку обычная 1еория интегралов Фурье имеет дело с процессами, которые в том или ином смысле имеют начало и коней, но не продолжаются неограниченно с примерно одинаковой интенсивностью. 4. Связь между скоростью убывания функции f(x) при |z| -» -f оо и гладкостью ее преобразования Фурм. Предположим, что не только /(х), но и ее произведение xf(x) является абсолютно интегрируемой функцйей на всей оси Ох. Тогда преобразование Фурье) будет дифференцируемой функцией. Действительно, формальное дифференцирование по параметру £ подынтегральной функции приводит к интегралу который является абсолютно и равномерно сходящимся относительно параметра Следовательно, дифференцирование возможно, и Таким образом, т. е. операция умножения f(x) на аргумент х переходит после преобразования Фурье в операцию t щ. Если вместе с функцией f(x) абсолютно интегрируемыми на всей оси Ох являются функции, то процесс дифференцирования можно продолжить. Получим, что функция имеет производные до порядка m включительно, причем Таким образом, чем быстрее функция f(x) убывает при тем более гладкой получается функция Теорема 2 (о сверле). Пусть- преобразования Фурье функций /,(ж) и f2(x) соответственно. Тогда причем двойной интеграл в правой части сходится абсолютно. Положим - х. Тогда будем иметь или, меняя порядок интегрирования, Функция называется сверткой функций и обозначается символом Формула (1) может быть теперь записана так: Отсюда видно, что преобразование Фурье свертки функций f\(x) и f2(x) равно умноженному на у/2ж произведению преобразований Фурье свертываемых функций, Замечание. Нетрудно установить следующие свойства свертки: 1) линейность: 2) коммутативность: §4. Приложения преобразования Фурье 1. Пусть Р(^) - линейный дифференциальный оператор порядка m с постоянными коэффициентами, Используя формулу для преобразования Фурье производных функции у(х), находим " Рассмотрим дифференциальное уравнение где Р - введенный выше дифференциальный оператор. Предположим, что искомое решение у(х) имеет преобразование Фурье у (О. а функция f(x) имеет преобразование /(£) Применяя преобразование Фурье к уравнению (1), получим вместо дифференциального алгебраическое уравнение на оси относительно откуда так что формально где символ обозначает обратное преобразование Фурье. Основное ограничение применимости этого метода связано со следующим фактом. Решение обыкновенного дифференциального уравнения с постоянными коэффициентами содержит функции вида еЛ*, eaz cos fix, еах sin рх. Они не являются абсолютно интегрируемыми на оси -оо < х < 4-оо, и преобразование Фурье для них не определено, так что, строго говоря, применятьданный метод нельзя. Это ограничение можно обойти, если ввести в рассмотрение так называемые обобщенные функции. Однако в ряде случаев преобразование Фурье все же применимо в своей классической форме. Пример. Найти решение а = а(х, t) уравнения (а = const), при начальных условиях Это - задача о свободных колебаниях бесконечной однородной струны, когда задано начальное отклонение <р(х) точек сгруны, а начальные скорости отсутствуют. 4 Поскольку пространственная переменная х изменяется в пределах от -оо до +оо, подвергнем уравнение и начальные условия преобразованию Фурье по переменной х. Будем предполагать, что 1) функции и(х, t) и

I. Преобразования Фурье.

Определение 1. Функция

Называется преобразованием Фурье функции .

Интеграл здесь понимается в смысле главного значения

и считается что он существует.

Если – абсолютно интегрируемая на ℝ функция, то, поскольку при , для любой такой функции имеет смысл преобразование Фурье (1), причем интеграл (1) сходится абсолютно и равномерно по на всей прямой ℝ.

Определение 2 . Если – преобразование Фурье функции
, то сопоставляемый интеграл

Понимаемый в смысле главного значения, называется интегралом Фурье функции .

Пример 1. Найти преобразование Фурье функции

Заданная функция абсолютно интегрируема на , действительно,

Определение 3. Понимаемые в смысле главного значения интегралы

Называются соответственно косинус- и синус-преобразованиями Фурье функции .

Полагая , , , получаем отчасти уже знакомое нам по рядам Фурье соотношение

Как видно из соотношений (3), (4),

Формулы (5), (6) показывают, что преобразования Фурье вполне определяются на всей прямой , если они известны лишь для неотрицательных значений аргумента.

Пример 2. Найти косинус - и синус - преобразования Фурье функции

Как показано в примере 1, заданная функция абсолютно интегрируема на .

Найдем ее косинус - преобразование Фурье по формуле (3):

Аналогично, нетрудно найти синус – преобразование Фурье функции f (x ) по формуле (4):

Используя примеры 1 и 2, нетрудно непосредственной подстановкой убедиться, что для f (x ) выполняется соотношение (5).

Если функция вещественнозначна, то из формул (5), (6) в этом случае следует

Поскольку в этом случае и – вещественные функции на R, что видно из их определений (3), (4). Впрочем, равенство (7) при условии получается и непосредственно из определения (1) преобразования Фурье, если учесть, что знак сопряжения можно вносить под знак интеграла. Последние наблюдение позволяет заключить, что для любой функции справедливо равенство



Полезно также заметить, что если – вещественная и четная функция, т.е. , то

если – вещественная и нечетная функция, т.е. , то

А если – чисто мнимая функция, т.е. . , то

Заметим что если – вещественнозначная функция, то интеграл Фурье можно записать также в виде

Где

Пример 3.
(считая )


поскольку нам известно значение интеграла Дирихле

Рассмотренная в примере функция не является абсолютно интегрируемой на и её преобразование Фурье имеет разрывы. О том, что преобразование Фурье абсолютно интегрируемых функций не имеет разрывов, говорит следующая

Лемма 1. Если функция локально интегрируема и абсолютно интегрируема на , то

a) её преобразование Фурье определено при любом значении

b)

Напомним, что если – вещественно или комплекснозначная функция, определенная на открытом множестве , то функция называется локально интегрируемой на , если любая точка имеет окрестность , в которой функция интегрируема. В частности, если , условие локальной интегрируемости функции , очевидно, равносильно тому, что для любого отрезка .



Пример 4. Найдем преобразование Фурье функции :

Дифференцируя последний интеграл по параметру и интегрируя затем по частям, находим, что

или

Значит, , где – постоянная, которую, пользуясь интегралом Эйлера-Пуассона находим из соотношения

Итак, мы нашли, что , и одновременно показали, что , а .

Определение 4. Говорят, что функция , заданная в проколотой окрестности точки , удовлетворяет в точке условиям Дини, если

a) в точке существуют оба односторонних предела

b) оба интеграла

сходятся абсолютно.

Абсолютная сходимость интеграла означает абсолютную сходимость интеграла хоть при каком-нибудь значении .

Достаточные условия представимости функции интегралом Фурье.

Теорема 1. Если абсолютно интегрируемая на и локально кусочно непрерывная функция удовлетворяет в точке условиям Дини, то её интеграл Фурье сходится в этой точке, причем к значению

, равному полусумме левого и правого пределов значений функции в этой точке.

Следствие 1. Если функция непрерывна, имеет в каждой точке конечные односторонние производные и абсолютно интегрируемая на , то она представляется на своим интегралом Фурье

где преобразование Фурье функции .

Представление функции интегралом Фурье можно переписать в виде:

Замечание. Сформулированные в теореме 1 и следствии 1 условия на функцию являются достаточными, но не являются необходимыми для возможности такого представления.

Пример 5. Представить функцию интегралом Фурье, если

Данная функция является нечетной и непрерывной на ℝ, кроме точек , , .

В силу нечетности и вещественности функции имеем:

и из равенств (5) и (10) следует, что

В точках непрерывности функции имеем:

Но функция нечетная, поэтому

так как интеграл вычисляется в смысле главного значения.

Функция четная, поэтому

если , . При должно выполняться равенство

Полагая , отсюда находим

Если в последнем выражении для положить , то

Полагая здесь , найдем

Если функция вещественнозначная кусочно непрерывна на любом отрезке действительной прямой абсолютно интегрируема на и имеет в каждой точке конечные односторонние производные тогда в точках непрерывности функции представляется в виде интеграла Фурье

а в точках разрыва функции левую часть равенства (1) следует заменить на

Если непрерывная, абсолютно интегрируемая на функция имеет в каждой точке конечные односторонние производные, то в случае, когда это функция является четной, справедливо равенство

а в случае, когда - нечетная функция, выполняется равенство

Пример 5’. Представить функцию интегралом Фурье, если:

Так как - непрерывная на четная функция, то, используя формулы (13.2), (13.2’), имеем

Обозначим символом понимаемый в смысле главного значения интеграл

Следствие 2. Для любой функции , удовлетворяющей условиям следствия 1, существуют все преобразования , , , и имеют место равенства

Имея ввиду эти соотношения, преобразование (14) часто называют обратным преобразование Фурье и вместо пишут , а сами равенства (15) называют формулой обращения преобразования Фурье .

Пример 6. Пусть и

Заметим, что если , то при любой функции

Возьмем теперь функцию . Тогда

Если же взять функцию , являющуюся нечетным продолжением функции , на всю числовую ось, то

Используя теорему 1, получаем, что

Все интегралы здесь понимаются в смысле главного значения,

Отделяя в двух последних интегралах действительные и мнимые части, находим интегралы Лапласа

Определение . Функцию

будем называть нормированным преобразованием Фурье.

Определение . Если – нормированное преобразование Фурье функции , то сопоставляемый интеграл

Будем называть нормированным интегралом Фурье функции .

Будем рассматривать нормированное преобразование Фурье (16).

Введем для удобства следующие обозначения:

(т.е. ).

В сравнении с прежними обозначениями это всего лишь перенормировка: Значит, в частности, соотношения (15) позволяют заключить, что

или, в более короткой записи,

Определение 5. Оператор мы будем называть нормированным преобразованием Фурье, а оператор будем называть обратным нормированным преобразованием Фурье.

В лемме 1 отмечалось, что преобразование Фурье любой абсолютно интегрируемой на функции стремится на бесконечности к нулю. В следующих двух утверждениях констатируется, что, подобно коэффициентам Фурье, преобразование Фурье тем быстрее стремится к нулю, чем глаже функция, от которой оно берется (в первом утверждении); взаимный с этим факт будет состоять в том, что чем быстрее стремится к нулю функция, от которой берется преобразование Фурье, тем глаже ее преобразование Фурье (второе утверждение).

Утверждение 1 (о связи гладкости функции и скорости убывания её преобразования Фурье). Если и все функции абсолютно интегрируема на , то :

а) при любом

б)

Утверждение 2 (о связи скорости убывания функции и гладкости её преобразования Фурье).Если локально интегрируемая функция : такова, что функция абсолютно интегрируема н а , то :

а) преобразование Фурье функции принадлежит классу

б) имеет место неравенство

Приведем основные аппаратные свойства преобразования Фурье.

Лемма 2. Пусть для функций и существует преобразование Фурье (соответственно, обратное преобразование Фурье), тогда, каковы бы ни были числа и , существует преобразование Фурье (соответственно, обратное преобразование Фурье) и для функции , причем

(соответственно ).

Это свойство называется линейностью преобразования Фурье, (соответственно обратного преобразования Фурье).

Следствие. .

Лемма 3. Преобразование Фурье, так же как и обратное преобразование, является взаимно однозначным преобразованием на множестве непрерывных абсолютно интегрируемых на всей оси функций, имеющих в каждой точке односторонние производные.

Это означает, что если и – две функции указанного типа и если (соответственно, если ), то на всей оси.

Из утверждения леммы 1 можно получить следующую лемму.

Лемма 4. Если последовательность абсолютно интегрируемых функций и абсолютно интегрируемая функция таковы, что

то последовательность равномерно на всей оси сходится к функции .

Займемся теперь изучением преобразования Фурье сверток двух функций. Для удобства видоизменим определение свертки , добавив дополнительный множитель

Теорема 2. Пусть функции и ограничены, непрерывны и абсолютно интегрируемы на вещественно оси, тогда

т.е. преобразование Фурье свертки двух функций равно произведению преобразований Фурье этих функций.

Составим сводную таблицу №1 свойств нормированного преобразования Фурье, полезных при решении задач приведенных ниже.

Таблица №1

Функция Нормированное преобразование Фурье

Используя свойства 1-4 и 6, получаем

Пример 7. Найти нормированное преобразование Фурье функции

В примере 4 было показано, что

так как, если

По этому по свойству 3 имеем:

Аналогично, можно составить таблицу №2 для нормированного обратного преобразования Фурье:

Таблица №2

Функция Нормированное обратное преобразование Фурье

Так же как и ранее, используя свойства 1- 4 и 6 получаем что

Пример 8. Найти нормированное обратное преобразование Фурье функции

Как следует из примера 6

При имеем:

Представив функцию в виде

используем свойство 6 при

Варианты заданий для расчетно-графических работ

1. Найти синус – преобразование Фурье функции

2. Найти синус – преобразование Фурье функции

3. Найти косинус – преобразование Фурье функции

4. Найти косинус – преобразование Фурье функции

5. Найти синус – преобразование Фурье функции

6.Найти косинус – преобразование Фурье функции

7.Найти синус – преобразование Фурье функции

8. Найти косинус – преобразование Фурье функции

9. Найти косинус – преобразование Фурье функции

10. Найти синус – преобразование Фурье функции

11. Найти синус – преобразование Фурье функции

12. Найти синус - преобразование функции

13. Найти синус - преобразование функции

14. Найти косинус - преобразование функции

15. Найти косинус - преобразование функции

16. Найти преобразование Фурье функции , если:

17. Найти преобразование Фурье функции , если:

18. Найти преобразование Фурье функции , если:

19. Найти преобразование Фурье функции , если:

20. Найти преобразование Фурье функции , если:

21. Найти преобразование Фурье функции , если:

22. Найти нормированное обратное преобразование Фурье функции

используя формулу

24. Найти нормированное обратное преобразование Фурье функции

используя формулу

26. Найти нормированное обратное преобразование Фурье функции

используя формулу

28. Найти нормированное обратное преобразование Фурье функции

используя формулу

30. Найти нормированное обратное преобразование Фурье функции

используя формулу

23. Найти нормированное обратное преобразование Фурье функции

используя формулу

25. Найти нормированное обратное преобразование Фурье функции

используя формулу

27. Найти нормированное обратное преобразование Фурье функции

используя формулу

29. Найти нормированное обратное преобразование Фурье функции

используя формулу

31. Найти нормированное обратное преобразование Фурье функции

используя формулу

32. Представить функцию интегралом Фурье

33. Представить функцию интегралом Фурье

34. Представить функцию интегралом Фурье

35. Представить функцию интегралом Фурье

36. Представить функцию интегралом Фурье

37. Представить функцию интегралом Фурье

38. Представить функцию интегралом Фурье

39. Представить функцию интегралом Фурье

40. Представить функцию интегралом Фурье

41. Представить функцию интегралом Фурье

42. Представить функцию интегралом Фурье

43. Представить интегралом Фурье функцию , продолжив её нечетным образом на интервал , если:

44. Представить интегралом Фурье функцию , продолжив её нечетным образом на интервал , если.