Дифференцирование и интегрирование степенных рядов. Степенные ряды теорема абеля ряд маклорена. Семантическая структура предложения

Ряды.

Основные определения.

Определение. Сумма членов бесконечной числовой последовательности называется числовым рядом .

При этом числа будем называть членами ряда, а u n – общим членом ряда.

Определение. Суммы , n = 1, 2, … называются частными (частичными) суммами ряда.

Таким образом, возможно рассматривать последовательности частичных сумм ряда S 1 , S 2 , …,S n , …

Определение. Ряд называется сходящимся , если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.

Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.

Свойства рядов.

1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.

2) Рассмотрим два ряда и , где С – постоянное число.

Теорема. Если ряд сходится и его сумма равна S, то ряд тоже сходится, и его сумма равна СS. (C ¹ 0)

3) Рассмотрим два ряда и . Суммой или разностью этих рядов будет называться ряд , где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.

Теорема. Если ряды и сходятся и их суммы равны соответственно S и s, то ряд тоже сходится и его сумма равна S + s.

Разность двух сходящихся рядов также будет сходящимся рядом.

Сумма сходящегося и расходящегося рядов будет расходящимся рядом.

О сумме двух расходящихся рядов общего утверждения сделать нельзя.

При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.

Критерий Коши.

(необходимые и достаточные условия сходимости ряда)

Для того, чтобы последовательность была сходящейся, необходимо и достаточно, чтобы для любого существовал такой номер N, что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:

Доказательство. (необходимость)

Пусть , тогда для любого числа найдется номер N такой, что неравенство

Выполняется при n>N. При n>N и любом целом p>0 выполняется также неравенство . Учитывая оба неравенства, получаем:

Необходимость доказана. Доказательство достаточности рассматривать не будем.

Сформулируем критерий Коши для ряда.

Для того, чтобы ряд был сходящимся необходимо и достаточно, чтобы для любого существовал номер N такой, что при n>N и любом p>0 выполнялось бы неравенство

Однако, на практике использовать непосредственно критерий Коши не очень удобно. Поэтому как правило используются более простые признаки сходимости:



1) Если ряд сходится, то необходимо, чтобы общий член u n стремился к нулю. Однако, это условие не является достаточным. Можно говорить только о том, что если общий член не стремится к нулю, то ряд точно расходится. Например, так называемый гармонический ряд является расходящимся, хотя его общий член и стремится к нулю.

Пример. Исследовать сходимость ряда

Найдем - необходимый признак сходимости не выполняется, значит ряд расходится.

2) Если ряд сходится, то последовательность его частных сумм ограничена.

Однако, этот признак также не является достаточным.

Например, ряд 1-1+1-1+1-1+ … +(-1) n+1 +… расходится, т.к. расходится последовательность его частных сумм в силу того, что

Однако, при этом последовательность частных сумм ограничена, т.к. при любом n .

Ряды с неотрицательными членами.

При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.

Теорема. Для сходимости ряда с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены .

Признак сравнения рядов с неотрицательными членами.

Пусть даны два ряда и при u n , v n ³ 0 .

Теорема. Если u n £ v n при любом n , то из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда .

Доказательство. Обозначим через S n и s n частные суммы рядов и . Т.к. по условию теоремы ряд сходится, то его частные суммы ограничены, т.е. при всех n s n < M, где М – некоторое число. Но т.к. u n £ v n , то S n £ s n то частные суммы ряда тоже ограничены, а этого достаточно для сходимости.

Пример.

Т.к. , а гармонический ряд расходится, то расходится и ряд .

Пример. Исследовать на сходимость ряд

Т.к. , а ряд сходится (как убывающая геометрическая прогрессия), то ряд тоже сходится.

Также используется следующий признак сходимости:

Теорема. Если и существует предел , где h – число, отличное от нуля, то ряды и ведут одинаково в смысле сходимости.

Признак Даламбера.

(Жан Лерон Даламбер (1717 – 1783) – французский математик)

Если для ряда с положительными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство

то ряд сходится, если же для всех достаточно больших n выполняется условие

то ряд расходится.

Предельный признак Даламбера.

Предельный признак Даламбера является следствием из приведенного выше признака Даламбера.

< 1 ряд сходится, а при r > 1 – расходится. Если r = 1, то на вопрос о сходимости ответить нельзя.

Пример. Определить сходимость ряда .

Вывод: ряд сходится.

Пример. Определить сходимость ряда

Вывод: ряд сходится.

Признак Коши. (радикальный признак)

Если для ряда с неотрицательными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство

то ряд сходится, если же для всех достаточно больших n выполняется неравенство

то ряд расходится.

Следствие. Если существует предел , то при r<1 ряд сходится, а при r>1 ряд расходится.

Пример. Определить сходимость ряда .

Вывод: ряд сходится.

Пример. Определить сходимость ряда .

Т.е. признак Коши не дает ответа на вопрос о сходимости ряда. Проверим выполнение необходимых условий сходимости. Как было сказано выше, если ряд сходится, то общий член ряда стремится к нулю.

таким образом, необходимое условие сходимости не выполняется, значит, ряд расходится.

Интегральный признак Коши.

Если j(х) – непрерывная положительная функция, убывающая на промежутке и то интегралы и ведут себя одинаково в смысле сходимости.

Знакопеременные ряды.

Знакочередующиеся ряды.

Знакочередующийся ряд можно записать в виде:

Признак Лейбница.

Если у знакочередующегося ряда абсолютные величины u i убывают и общий член стремится к нулю , то ряд сходится.

Абсолютная и условная сходимость рядов.

Рассмотрим некоторый знакопеременный ряд (с членами произвольных знаков).

и ряд, составленный из абсолютных величин членов ряда (1):

Теорема. Из сходимости ряда (2) следует сходимость ряда (1).

Доказательство. Ряд (2) является рядом с неотрицательными членами. Если ряд (2) сходится, то по критерию Коши для любого e>0 существует число N, такое, что при n>N и любом целом p>0 верно неравенство:

По свойству абсолютных величин:

То есть по критерию Коши из сходимости ряда (2) следует сходимость ряда (1).

Определение. Ряд называется абсолютно сходящимся , если сходится ряд .

Очевидно, что для знакопостоянных рядов понятия сходимости и абсолютной сходимости совпадают.

Определение. Ряд называется условно сходящимся , если он сходится, а ряд расходится.

Признаки Даламбера и Коши для знакопеременных рядов.

Пусть - знакопеременный ряд.

Признак Даламбера. Если существует предел , то при r<1 ряд будет абсолютно сходящимся, а при r>

Признак Коши. Если существует предел , то при r<1 ряд будет абсолютно сходящимся, а при r>1 ряд будет расходящимся. При r=1 признак не дает ответа о сходимости ряда.

Свойства абсолютно сходящихся рядов.

1) Теорема. Для абсолютной сходимости ряда необходимо и достаточно, чтобы его можно было представить в виде разности двух сходящихся рядов с неотрицательными членами .

Следствие. Условно сходящийся ряд является разностью двух расходящихся рядов с неотрицательными стремящимися к нулю членами.

2) В сходящемся ряде любая группировка членов ряда, не изменяющая их порядка, сохраняет сходимость и величину ряда.

3) Если ряд сходится абсолютно, то ряд, полученный из него любой перестановкой членов, также абсолютно сходится и имеет ту же сумму.

Перестановкой членов условно сходящегося ряда можно получить условно сходящийся ряд, имеющий любую наперед заданную сумму, и даже расходящийся ряд.

4) Теорема. При любой группировке членов абсолютно сходящегося ряда (при этом число групп может быть как конечным, так и бесконечным и число членов в группе может быть как конечным, так и бесконечным) получается сходящийся ряд, сумма которого равна сумме исходного ряда .

5) Если ряды и сходятся абсолютно и их суммы равны соответственно S и s, то ряд, составленный из всех произведений вида взятых в каком угодно порядке, также сходится абсолютно и его сумма равна S×s - произведению сумм перемножаемых рядов.

Если же производить перемножение условно сходящихся рядов, то в результате можно получить расходящийся ряд.

Функциональные последовательности.

Определение. Если членами ряда будут не числа, а функции от х , то ряд называется функциональным .

Исследование на сходимость функциональных рядов сложнее исследования числовых рядов. Один и тот же функциональный ряд может при одних значениях переменной х сходиться, а при других – расходиться. Поэтому вопрос сходимости функциональных рядов сводится к определению тех значений переменной х , при которых ряд сходится.

Совокупность таких значений называется областью сходимости .

Так как пределом каждой функции, входящей в область сходимости ряда, является некоторое число, то пределом функциональной последовательности будет являться некоторая функция:

Определение. Последовательность {f n (x) } сходится к функции f(x) на отрезке , если для любого числа e>0 и любой точки х из рассматриваемого отрезка существует номер N = N(e, x), такой, что неравенство

выполняется при n>N.

При выбранном значении e>0 каждой точке отрезка соответствует свой номер и, следовательно, номеров, соответствующих всем точкам отрезка , будет бесчисленное множество. Если выбрать из всех этих номеров наибольший, то этот номер будет годиться для всех точек отрезка , т.е. будет общим для всех точек.

Определение. Последовательность {f n (x) } равномерно сходится к функции f(x) на отрезке , если для любого числа e>0 существует номер N = N(e), такой, что неравенство

выполняется при n>N для всех точек отрезка .

Пример. Рассмотрим последовательность

Данная последовательность сходится на всей числовой оси к функции f(x)=0 , т.к.

Построим графики этой последовательности:

Как видно, при увеличении числа n график последовательности приближается к оси х .

Функциональные ряды.

Определение. Частными (частичными) суммами функционального ряда называются функции

Определение. Функциональный ряд называется сходящимся в точке (х=х 0 ), если в этой точке сходится последовательность его частных сумм. Предел последовательности называется суммой ряда в точке х 0 .

Определение. Совокупность всех значений х , для которых сходится ряд называется областью сходимости ряда.

Определение. Ряд называется равномерно сходящимся на отрезке , если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.

Теорема. (Критерий Коши равномерной сходимости ряда)

Для равномерной сходимости ряда необходимо и достаточно, чтобы для любого числа e>0 существовал такой номер N(e), что при n>N и любом целом p>0 неравенство

выполнялось бы для всех х на отрезке .

Теорема. (Признак равномерной сходимости Вейерштрасса)

(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)

Ряд сходится равномерно и притом абсолютно на отрезке , если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами:

т.е. имеет место неравенство:

Еще говорят, что в этом случае функциональный ряд мажорируется числовым рядом .

2) Теорема о почленном интегрировании ряда.

Равномерно сходящийся на отрезке ряд с непрерывными членами можно почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку , сходится к интегралу от суммы ряда по этому отрезку .

3) Теорема о почленном дифференцировании ряда.

Если члены ряда сходящегося на отрезке представляют собой непрерывные функции, имеющие непрерывные производные, и ряд, составленный из этих производных сходится на этом отрезке равномерно, то и данный ряд сходится равномерно и его можно дифференцировать почленно.

На основе того, что сумма ряда является некоторой функцией от переменной х , можно производить операцию представления какой – либо функции в виде ряда (разложения функции в ряд), что имеет широкое применение при интегрировании, дифференцировании и других действиях с функциями.

(Нильс Хенрик Абель (1802 – 1829) – норвежский математик)

Теорема. Если степенной ряд сходится при x = x 1 , то он сходится и притом абсолютно для всех .

Доказательство. По условию теоремы, так как члены ряда ограничены, то

где k - некоторое постоянное число. Справедливо следующее неравенство:

Из этого неравенства видно, что при x численные величины членов нашего ряда будут меньше (во всяком случае не больше) соответствующих членов ряда правой части записанного выше неравенства, которые образуют геометрическую прогрессию. Знаменатель этой прогрессии по условию теоремы меньше единицы, следовательно, эта прогрессия представляет собой сходящийся ряд.

Поэтому на основании признака сравнения делаем вывод, что ряд сходится, а значит ряд

Рассмотрим функциональный ряд$\sum \limits _{n=1}^{\infty }u_{n} (x)=u_{1} (x)+u_{2} (x)+u_{3} (x)+...$, члены которого являются функциями одной независимой переменной х. Сумма первых n членов ряда $S_{n} (x)=u_{1} (x)+u_{2} (x)+...+u_{n} (x)$ является частичной суммой данного функционального ряда. Общий член $u_{n} (x)$ есть функция от х, определённая в некоторой области. Рассмотрим функциональный ряд в точке $x=x_{0} $. Если соответствующий числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} (x_{0})$сходится, т.е. существует предел частичных сумм этого ряда$\mathop{\lim }\limits_{n\to \infty } S_{n} (x_{0})=S(x_{0})$(где $S(x_{0})

Определение 2

Областью сходимости функционального ряда $\sum \limits _{n=1}^{\infty }u_{n} (x)$ называется множество всех таких значений х, при которых функциональный ряд сходится. Область сходимости, состоящая из всех точек сходимости, обозначается $D(x)$. Отметим, что $D(x)\subset $R.

Функциональный ряд сходится в области $D(x)$, если для любого $x\in D(x)$ он сходится как числовой ряд, при этом его сумма будет некоторой функцией $S(x)$. Это так называемая предельная функция последовательности $\left\{S{}_{n} (x)\right\}$: $\mathop{\lim }\limits_{n\to \infty } S_{n} (x)=S(x)$.

Как находить область сходимости функционального ряда $D(x)$? Можно использовать признак, аналогичный признаку Даламбера. Для ряда $\sum \limits _{n=1}^{\infty }u_{n} (x)$ составляем $u_{n+1} (x)$ и рассматриваем предел при фиксированном х: $\mathop{\lim }\limits_{n\to \infty } \left|\frac{u_{n+1} (x)}{u_{n} (x)} \right|=\left|l(x)\right|$. Тогда $D(x)$ является решением неравенства $\left|l(x)\right|

Пример 1

Найти область сходимости ряда $\sum \limits _{n=1}^{\infty }\, \frac{x^{n} }{n} \, $.

Решение. Обозначим $u_{n} (x)=\frac{x^{n} }{n} $, $u_{n+1} (x)=\frac{x^{n+1} }{n+1} $. Составим и вычислим предел $\mathop{\lim }\limits_{n\to \infty } \left|\frac{u_{n+1} (x)}{u_{n} (x)} \right|=\mathop{\lim }\limits_{n\to \infty } \left|\frac{x^{n+1} \cdot n}{x^{n} \cdot (n+1)} \right|=\left|x\right|$, тогда область сходимости ряда определяется неравенством $\left|x\right|

    если $x=1$, $u_{n} (1)=\frac{1}{n} $, то получается расходящийся ряд $\sum \limits _{n=1}^{\infty }\, \frac{1}{n} \, $;

    если $x=-1$, $u_{n} (-1)=\frac{(-1)^{n} }{n} $, то ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} }{n} \, \, $ сходится условно (по признаку Лейбница).

Таким образом, область сходимости $D(x)$ ряда $\sum \limits _{n=1}^{\infty }\, \frac{x^{n} }{n} \, $имеет вид:$-1\le x

Свойства степенных рядов

Рассмотрим степенной ряд $\sum \limits _{n=0}^{\infty }a_{n} x^{n} $, у которого интервал сходимости $(-R;\, R)$, тогда сумма степенного ряда $S(x)$ определена для всех $x\in (-R;R)$ и можно записать равенство $S(x)=\sum \limits _{n=0}^{\infty }a_{n} x^{n} $.

Свойство 1. Степенной ряд $\sum \limits _{n=0}^{\infty }a_{n} x^{n} $ сходится абсолютно в любом промежутке $\, \, \subset \, (-R;R)$, лежащем в интервале сходимости, причём сумма степенного ряда $S(x)$ является непрерывной функцией при всех $x\in $.

Свойство 2. Если отрезок $\, \, \subset \, (-R;R)$, то степенной ряд можнопочленно интегрировать от a до b, т.е. если

$S(x)=\sum \limits _{n=0}^{\infty }a_{n} x^{n} =a_{0} +a_{1} x+a_{2} x^{2} +...$, то

$\int \limits _{a}^{b}S(x)\, {\rm d}x =\sum \limits _{n=0}^{\infty }\int \limits _{a}^{b}a_{n} x^{n} \, {\rm d}x=\int \limits _{a}^{b}a_{0} {\rm d}x +\int \limits _{a}^{b}a_{1} x\, {\rm d}x +...+\int \limits _{a}^{b}a_{n} x^{n} \, {\rm d}x +...$.

При этом радиус сходимости не меняется:

где $a"_{n} =\frac{a_{n} }{n+1} $ - коэффициенты проинтегрированного ряда.

Свойство 3. Сумма степенного ряда есть функция, имеющая внутри интервала сходимости производные любого порядка. Производные от суммы степенного ряда будут суммами рядов, полученных из данного степенного ряда почленным дифференцированием соответствующее число раз, причём радиусы сходимости таких рядов будут те же, что и у исходного ряда.

Если $S(x)=a_{0} +a_{1} x+a_{2} x^{2} +...+a_{n} x^{n} +...=\sum \limits _{n=0}^{\infty }\, a_{n} \cdot x^{n} $,то $S"(x)=a_{1} +2a_{2} x+...+na_{n} x^{n-1} +...=\sum \limits _{n=1}^{\infty }\, n\cdot a_{n} \cdot x^{n-1} $,$S""(x)=2a_{2} +6a_{3} x+...+n(n-1)a_{n} x^{n-2} +...=\sum \limits _{n=2}^{\infty }\, n\cdot (n-1)\cdot a_{n} \cdot x^{n-2} $, ... , и т.д.

Примеры

    Ряд $\sum \limits _{n=1}^{\infty }n!\; x^{n} $ сходится только в точке $x=0$, во всех остальных точках ряд расходится. $V:\left\{0\right\}.$

    Ряд $\sum \limits _{n=1}^{\infty }\frac{x^{n} }{n!} $ сходится во всех точках оси, $V=R$.

    Ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} x^{n} }{n} $ сходится в области $V=(-1,\, 1]$.

    Ряд $\sum \limits _{n=1}^{\infty }\frac{1}{n+\cos x} $ расходится во всех точках оси $V=$$\emptyset$.

Определение . Функциональный ряд вида

где … – действительные числа, называется степенным рядом.

Областью абсолютной сходимости ряда является интервал , где число R – радиус сходимости.

Пусть степенной ряд имеет радиус сходимости R > 0. Тогда справедливы следующие положения:

1. Сумма ряда является непрерывной функцией от x во всем интервале сходимости .

2. Ряд равномерно сходится на любом отрезке , где .

3. Ряд можно почленно интегрировать по любому отрезку , лежащему внутри интервала .

4. Ряд можно почленно дифференцировать в любой точке сколь угодно раз.

Примечания:

1. При почленном интегрировании или дифференцировании степенного ряда получаются новые степенные ряды, при этом их радиус сходимости остается тот же.

2. Радиус сходимости степенного ряда можно найти по одной из формул:

, (10)

(11)

при условии, что указанные пределы существуют, – коэффициент ряда.

Задача 17.31

Найти сумму ряда .

Решение:

I способ . Найдем интервал сходимости ряда:

, , .

Упростим рациональную дробь , .

Тогда ряд может быть представлен разностью двух рядов:

Сходимость каждого из них остается та же (убедитесь в этом самостоятельно). Поэтому равенство имеет место. Обозначим суммы рядов соответственно и , а искомую сумму – через , .

Найдем сумму первого ряда:

Дифференцируя почленно ряд внутри интервала сходимости , получим: ; представляет собой геометрическую прогрессию со знаменателем .

При прогрессия сходится, , , и сумма равна: ; . Теперь, интегрируя на отрезке , лежащем внутри интервала сходимости , получим:

.

Найдем сумму второго ряда:

Выполним преобразование:

Обозначим сумму ряда, стоящего в скобках, через и продифференцируем в интервале :

– это тоже геометрическая прогрессия.

, , ;

.

Итак, сумма исходного ряда равна:



или
для .

II способ . Не повторяя подробностей I способа, связанных с интервалом сходимости данного ряда, предлагаем II вариант решения задачи. Обозначим сумму ряда через : .

Умножим на данный ряд: . Продифференцируем дважды полученный ряд:

,

Представляет собой геометрическую прогрессию со знаменателем , тогда . Проинтегрируем на отрезке :

Интегрируя по частям, получим:

для .

Задача 18.31

Найти сумму ряда .

Решение:

Данный ряд сходится в интервале (убедитесь в этом самостоятельно). Перепишем его, представив в виде суммы трех рядов:

Это возможно, так как каждый из рядов имеет одну и ту же область сходимости – интервал . Обозначим суммы трех рядов соответственно через , , , а искомую сумму – через .

как сумма членов геометрической прогрессии со знаменателем

Выполним преобразование:

Обозначим через сумму ряда .

Интегрируя почленно этот ряд на отрезке внутри интервала сходимости , получим:

Чтобы найти , надо продифференцировать дробь :

.

Следовательно, .

Теперь найдем :

Вынесем за скобки:

Обозначим через сумму ряда, стоящего в скобках. Тогда



В этих скобках стоит ряд, сумма которого найдена: . Получаем: .

Но , . Тогда сумма исходного ряда

Итак, для .

Ряд Тейлора

Определение . Ряд

называется рядом Тейлора по степеням для функции .

Функция может быть разложена в ряд Тейлора, если в рассматриваемой точке она имеет производные всех порядков и если остаточный член в точке при стремится к нулю. При ряд Тейлора называют иногда рядом Маклорена.

Теорема

Если функция разлагается в степенной ряд, то для неё этот ряд единственный и является рядом Тейлора.

Примечание . Находя последовательно производные функции и их значения в точке , можно записать ряд Тейлора. Но при этом исследование остаточного члена представляет большие трудности. Поэтому часто идут другим путем: пользуются готовыми разложениями основных элементарных функций в степенные ряды в комбинациях с правилами сложения, вычитания, умножения рядов и теоремами об их интегрировании и дифференцировании, как это, например, было показано в задачах 17.31 и 18.31.

Задача 19.31

Разложить функцию в ряд Тейлора по степеням .

Решение:

х 0 = 0. Воспользуемся примечанием. Так как

то функция упрощается, если применить метод неопределенных коэффициентов:

.

Сумма членов геометрической прогрессии со знаменателем равна: . В нашем случае . – радиус сходимости этого ряда. Слагаемое ,

Складывая ряды, получим: или , где – общая область сходимости. целиком лежит в области сходимости ряда .

Чтобы вычислить данный интеграл с точностью до 0,001, надо взять в полученном ряде два его члена (0,0005<0,001) (см. задачу 9.31).

Таким образом,

Вопросы для самопроверки

Числовые ряды

1. Дайте определения сходящихся и расходящихся рядов.

2. Сформулируйте необходимый признак сходимости ряда.

3. Сформулируйте достаточные признаки сходимости рядов с положительными членами: сравнение рядов с положительными членами; признак Даламбера; радикальный признак Коши, интегральный признак Коши.

4. Дайте определение абсолютно сходящегося ряда. Сформулируйте свойства абсолютно сходящихся рядов.

5. Сформулируйте признак Лейбница.

Функциональные ряды

6. Дайте определение области сходимости функционального ряда.

7. Какой ряд называется равномерно сходящимся?

8. Сформулируйте признак Вейерштрасса.

9. Условия разложимости функции в ряд Тейлора.

10. Сформулируйте теоремы об интегрировании и дифференцировании степенных рядов.

11. Изложите метод приближенного вычисления определенных интегралов с помощью рядов.


1. Кудрявцев Л.Д. Краткий курс математического анализа. – М.: Наука, 1989. – 736 с.

2. Бугров Я.С. Дифференциальное и интегральное исчисления /Я.С. Бугров, С.М. Никольский. – М.: Наука, 1984. – 432 с.

3. Шмелев П.А. Теория рядов в задачах и упражнениях. – М.: Высшая школа, 1983. – 176 с.

4. Пискунов Н.С. Дифференциальное и интегральное исчисления для втузов. Т. 2. – М.: Наука, 1985. – 576 с.

5. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Т. 2. – М.: Физматгиз, 1962. – 808 с.

6. Запорожец Г.И. Руководство к решению задач по математическому анализу. – М.: Высшая школа, 1966. – 460 с.

7. Кузнецов Л.А. Сборник заданий по высшей математике (ТР). – М.: Высшая школа, 1983. – 174 с.

8. Данко П.Е. Высшая математика в упражнениях и задачах. Ч. 2 /П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. – М.: Высшая школа, 1986. – 415 с.

9. Бронштейн И.Н. Справочник по математике для инженеров и учащихся втузов / И.Н. Бронштейн, К.А. Семендяев. – М.: Наука, 1986. – 544 с.


Учебное издание

Бородин Николай Павлович

Жернова Варвара Викторовна

Шуметова Людмила Викторовна

Шоркин Владимир Сергеевич

РЯДЫ

Учебно-методическое пособие

Редактор Т.Д. Васильева

Технический редактор Т.П. Прокудина

Орловский государственный технический университет

Лицензия ИД № 00670 от 05.01.2000

Подписано к печати 26.08.2004 г. Формат 60 x 84 1/16.

Печать офсетная. Уч.-изд. л. 1,9. Усл. печ. л. 2,4. Тираж 500 экз.

Заказ №____

Отпечатано с готового оригинал-макета

на полиграфической базе ОрелГТУ,

302030, г. Орел, ул. Московская, 65.

Рассмотрим функциональный ряд$\sum \limits _{n=1}^{\infty }u_{n} (x)=u_{1} (x)+u_{2} (x)+u_{3} (x)+...$, члены которого являются функциями одной независимой переменной х. Сумма первых n членов ряда $S_{n} (x)=u_{1} (x)+u_{2} (x)+...+u_{n} (x)$ является частичной суммой данного функционального ряда. Общий член $u_{n} (x)$ есть функция от х, определённая в некоторой области. Рассмотрим функциональный ряд в точке $x=x_{0} $. Если соответствующий числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} (x_{0})$сходится, т.е. существует предел частичных сумм этого ряда$\mathop{\lim }\limits_{n\to \infty } S_{n} (x_{0})=S(x_{0})$(где $S(x_{0})

Определение 2

Областью сходимости функционального ряда $\sum \limits _{n=1}^{\infty }u_{n} (x)$ называется множество всех таких значений х, при которых функциональный ряд сходится. Область сходимости, состоящая из всех точек сходимости, обозначается $D(x)$. Отметим, что $D(x)\subset $R.

Функциональный ряд сходится в области $D(x)$, если для любого $x\in D(x)$ он сходится как числовой ряд, при этом его сумма будет некоторой функцией $S(x)$. Это так называемая предельная функция последовательности $\left\{S{}_{n} (x)\right\}$: $\mathop{\lim }\limits_{n\to \infty } S_{n} (x)=S(x)$.

Как находить область сходимости функционального ряда $D(x)$? Можно использовать признак, аналогичный признаку Даламбера. Для ряда $\sum \limits _{n=1}^{\infty }u_{n} (x)$ составляем $u_{n+1} (x)$ и рассматриваем предел при фиксированном х: $\mathop{\lim }\limits_{n\to \infty } \left|\frac{u_{n+1} (x)}{u_{n} (x)} \right|=\left|l(x)\right|$. Тогда $D(x)$ является решением неравенства $\left|l(x)\right|

Пример 1

Найти область сходимости ряда $\sum \limits _{n=1}^{\infty }\, \frac{x^{n} }{n} \, $.

Решение. Обозначим $u_{n} (x)=\frac{x^{n} }{n} $, $u_{n+1} (x)=\frac{x^{n+1} }{n+1} $. Составим и вычислим предел $\mathop{\lim }\limits_{n\to \infty } \left|\frac{u_{n+1} (x)}{u_{n} (x)} \right|=\mathop{\lim }\limits_{n\to \infty } \left|\frac{x^{n+1} \cdot n}{x^{n} \cdot (n+1)} \right|=\left|x\right|$, тогда область сходимости ряда определяется неравенством $\left|x\right|

    если $x=1$, $u_{n} (1)=\frac{1}{n} $, то получается расходящийся ряд $\sum \limits _{n=1}^{\infty }\, \frac{1}{n} \, $;

    если $x=-1$, $u_{n} (-1)=\frac{(-1)^{n} }{n} $, то ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} }{n} \, \, $ сходится условно (по признаку Лейбница).

Таким образом, область сходимости $D(x)$ ряда $\sum \limits _{n=1}^{\infty }\, \frac{x^{n} }{n} \, $имеет вид:$-1\le x

Свойства степенных рядов

Рассмотрим степенной ряд $\sum \limits _{n=0}^{\infty }a_{n} x^{n} $, у которого интервал сходимости $(-R;\, R)$, тогда сумма степенного ряда $S(x)$ определена для всех $x\in (-R;R)$ и можно записать равенство $S(x)=\sum \limits _{n=0}^{\infty }a_{n} x^{n} $.

Свойство 1. Степенной ряд $\sum \limits _{n=0}^{\infty }a_{n} x^{n} $ сходится абсолютно в любом промежутке $\, \, \subset \, (-R;R)$, лежащем в интервале сходимости, причём сумма степенного ряда $S(x)$ является непрерывной функцией при всех $x\in $.

Свойство 2. Если отрезок $\, \, \subset \, (-R;R)$, то степенной ряд можнопочленно интегрировать от a до b, т.е. если

$S(x)=\sum \limits _{n=0}^{\infty }a_{n} x^{n} =a_{0} +a_{1} x+a_{2} x^{2} +...$, то

$\int \limits _{a}^{b}S(x)\, {\rm d}x =\sum \limits _{n=0}^{\infty }\int \limits _{a}^{b}a_{n} x^{n} \, {\rm d}x=\int \limits _{a}^{b}a_{0} {\rm d}x +\int \limits _{a}^{b}a_{1} x\, {\rm d}x +...+\int \limits _{a}^{b}a_{n} x^{n} \, {\rm d}x +...$.

При этом радиус сходимости не меняется:

где $a"_{n} =\frac{a_{n} }{n+1} $ - коэффициенты проинтегрированного ряда.

Свойство 3. Сумма степенного ряда есть функция, имеющая внутри интервала сходимости производные любого порядка. Производные от суммы степенного ряда будут суммами рядов, полученных из данного степенного ряда почленным дифференцированием соответствующее число раз, причём радиусы сходимости таких рядов будут те же, что и у исходного ряда.

Если $S(x)=a_{0} +a_{1} x+a_{2} x^{2} +...+a_{n} x^{n} +...=\sum \limits _{n=0}^{\infty }\, a_{n} \cdot x^{n} $,то $S"(x)=a_{1} +2a_{2} x+...+na_{n} x^{n-1} +...=\sum \limits _{n=1}^{\infty }\, n\cdot a_{n} \cdot x^{n-1} $,$S""(x)=2a_{2} +6a_{3} x+...+n(n-1)a_{n} x^{n-2} +...=\sum \limits _{n=2}^{\infty }\, n\cdot (n-1)\cdot a_{n} \cdot x^{n-2} $, ... , и т.д.

Примеры

    Ряд $\sum \limits _{n=1}^{\infty }n!\; x^{n} $ сходится только в точке $x=0$, во всех остальных точках ряд расходится. $V:\left\{0\right\}.$

    Ряд $\sum \limits _{n=1}^{\infty }\frac{x^{n} }{n!} $ сходится во всех точках оси, $V=R$.

    Ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} x^{n} }{n} $ сходится в области $V=(-1,\, 1]$.

    Ряд $\sum \limits _{n=1}^{\infty }\frac{1}{n+\cos x} $ расходится во всех точках оси $V=$$\emptyset$.