Броуновское движение людей. Броуновское движение: определение. Броуновское движение - что это такое? Теория броуновского движения

    Силы взаимодействия между молекулами……………………4
    За что был сожжен Джордано Бруно?........................ ................7
    Отрекался ли Галилео Галилей от своих научных взглядов?..................... .............................. .............................. .......9
    Список используемой литературы……………………………......... .............................. .13

Броуновское движение
Броуновское движение, беспорядочное движение малых частиц, взвешенных в жидкости или газе, происходящее под действием толчков со стороны молекул окружающей среды. Открыто Робертом Броуном в 1827. Видимые только под микроскопом взвешенные частицы движутся независимо друг от друга и описывают сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды. Интенсивность Броуновского движения увеличивается с ростом температуры среды и с уменьшением её вязкости и размеров частиц.
При наблюдении Броуновского движения фиксируется положение частицы через равные промежутки времени. Конечно, между наблюдениями частица движется не прямолинейно, но соединение последовательных положений прямыми линиями даёт условную картину движения.
Теория Броуновского движения объясняет случайные движения частицы действием случайных сил со стороны молекул и сил трения. Случайный характер силы означает, что её действие за интервал времени t 1 совершенно не зависит от действия за интервал t 2 , если эти интервалы не перекрываются. Средняя за достаточно большое время сила равна нулю, и среднее смещение броуновской частицы также оказывается нулевым.
Теория Броуновского движения сыграла важную роль в обосновании статистической механики. Помимо этого, она имеет и практическое значение. Прежде всего, Броуновское движение ограничивает точность измерительных приборов. Например, предел точности показаний зеркального гальванометра определяется дрожанием зеркальца, подобно броуновской частице бомбардируемого молекулами воздуха. Законами Броуновского движения определяется случайное движение электронов, вызывающее шумы в электрических цепях. Диэлектрические потери в диэлектриках объясняются случайными движениями молекул-диполей, составляющих диэлектрик. Случайные движения ионов в растворах электролитов увеличивают их электрическое сопротивление.
Силы взаимодействия между молекулами

Межмолекулярное взаимодействие - это взаимодействие между электрически нейтральными молекулами или атомами . Силы межмолекулярного взаимодействия впервые принял во внимание Я. Д. Ван-дер-Ваальс (1873 ) для объяснения свойств реальных газов и жидкостей.
Ориентационные силы действуют между полярными молекулами, то есть обладающими дипольными электрическими моментами . Сила притяжения между двумя полярными молекулами максимальна в том случае, когда их дипольные моменты располагаются вдоль одной линии. Эта сила возникает благодаря тому, что расстояния между разноимёнными зарядами немного меньше, чем между одноимёнными. В результате притяжение диполей превосходит их отталкивание. Взаимодействие диполей зависит от их взаимной ориентации, и поэтому силы дипольного взаимодействия называются ориентационными . Хаотическое тепловое движение непрерывно меняет ориентацию полярных молекул, но, как показывает расчёт, среднее по всевозможным ориентациям значение силы имеет определённую величину, не равную нулю.

Индукционные (или поляризационные) силы действуют между полярной и неполярной молекулами. Полярная молекула создаёт электрическое поле , которое поляризует молекулу с электрическими зарядами, равномерно распределёнными по объёму. Положительные заряды смещаются по направлению электрического поля (то есть от положительного полюса), а отрицательные - против (к положительному полюсу). В результате у неполярной молекулы индуцируется дипольный момент.
Эта энергия называется индукционной , так как она появляется благодаря поляризации молекул, вызванной электростатической индукцией . Индукционные силы (F ind ?r ? 7) действуют также и между полярными молекулами.
Между неполярными молекулами действует дисперсионное межмолекулярное взаимодействие . Природа этого взаимодействия была выяснена полностью только после создания квантовой механики . В атомах и молекулах электроны сложным образом движутся вокруг ядер. В среднем по времени дипольные моменты неполярных молекул оказываются равными нулю. Но в каждый момент электроны занимают какое-то положение. Поэтому мгновенное значение дипольного момента (например, у атома водорода) отлично от нуля. Мгновенный диполь создаёт электрическое поле, поляризующее соседние молекулы. В результате возникает взаимодействие мгновенных диполей . Энергия взаимодействия между неполярными молекулами есть средний результат взаимодействия всевозможных мгновенных диполей с дипольными моментами, которые они наводят в соседних молекулах благодаря индукции.
Межмолекулярное взаимодействие данного типа называется дисперсионным потому, что дисперсия света в веществе определяется теми же свойствами молекул, что и это взаимодействие. Дисперсионные силы действуют между всеми атомами и молекулами, так как механизм их появления не зависит от того, есть ли у молекул (атомов) постоянные дипольные моменты или нет. Обычно эти силы превосходят по величине как ориентационные, так и индукционные. Только при взаимодействии молекул с большими дипольными моментами, например молекул воды, F or > F disp (в 3 раза для молекул воды). При взаимодействии же таких полярных молекул, как CO , HI , HBr и других, дисперсионные силы в десятки и сотни раз превосходят все остальные.
Очень существенно, что все три типа межмолекулярного взаимодействия одинаковым образом убывают с расстоянием:
U = U or + U ind + U disp ?r ? 6
Силы отталкивания действуют между молекулами на очень малых расстояниях, когда приходят в соприкосновение заполненные электронные оболочки атомов, входящих в состав молекул. Существующий в квантовой механике принцип Паули запрещает проникновение заполненных электронных оболочек друг в друга. Возникающие при этом силы отталкивания зависят в большей степени, чем силы притяжения, от индивидуальности молекул

За что был сожжен Джордано Бруно?
Бруно (Bruno) Джордано Филиппе (1548, Нола, - 17.2.1600, Рим), итальянский философ и поэт, представитель пантеизма . Преследуемый церковниками за свои взгляды, покинул Италию и жил во Франции, Англии, Германии. По возвращении в Италию (1592) был обвинён в ереси и свободомыслии и после восьмилетнего пребывания в тюрьме сожжён на костре
В философии Бруно идеи неоплатонизма (в особенности представления о едином начале и мировой душе как движущем принципе Вселенной, приведшие Бруно к гилозоизму ) перекрещивались с сильным влиянием воззрений античных материалистов, а также пифагорейцев. Оформлению пантеистической натурфилософии Бруно, направленной против схоластического аристотелизма, во многом способствовало знакомство Бруно с философией Николая Кузанского (у которого Бруно почерпнул и идею «отрицательной теологии», исходящей из невозможности положительного определения бога). Опираясь на эти источники, Бруно считал целью философии познание не сверхприродного бога, а природы, являющейся «богом в вещах». Развивая гелиоцентрическую теорию Н. Коперника , оказавшую на него огромное влияние, Бруно высказывал идеи о бесконечности природы и бесконечном множестве миров, утверждал физическую однородность мира (учение о 5 элементах, из которых состоят все тела, - земля, вода, огонь, воздух и эфир). Представление о единой бесконечной простой субстанции, из которой возникает множество вещей, связывалось у Бруно с идеей внутреннего родства и совпадения противоположностей («О причине, начале и едином», 1584). В бесконечности, отождествляясь, сливаются прямая и окружность, центр и периферия, форма и материя и т.п. Основной единицей бытия является монада , в деятельности которой сливаются телесное и духовное, объект и субъект. Высшая субстанция есть «монада монад», или бог; как целое она проявляется во всём единичном - «всё во всём». Эти идеи оказали большое влияние на развитие философии нового времени: идея единой субстанции в её отношении к единичным вещам разрабатывалась Бруно Спинозой, идея монады - Г. Лейбницем, идея единства сущего и «совпадения противоположностей» - в диалектике Ф. Шеллинга и Г. Гегеля. Таким образом, философия Бруно явилась переходным звеном от средневековых философских систем к философским концепциям нового времени.
В. В. Соколов.
В космологии Бруно высказал ряд догадок, опередивших его эпоху и оправданных лишь последующими астрономическими открытиями: о существовании неизвестных в его время планет в пределах нашей Солнечной системы, о вращении Солнца и звёзд вокруг оси («О неизмеримом и неисчислимом», 1591), о том, что во Вселенной существует бесчисленное количество тел, подобных нашему Солнцу, и др. Бруно опроверг средневековые представления о противоположности между Землей и небом и выступал против антропоцентризма, говоря об обитаемости др. миров.
Как поэт Бруно принадлежал к противникам классицизма. Собственно художественное произведение Бруно: антиклерикальная сатирическая поэма «Ноев ковчег», философские сонеты, комедия «Подсвечник» (1582, русский перевод 1940), в которой Бруно порывает с канонами «учёной комедии» и создаёт свободную драматическую форму, позволяющую реалистически изобразить быт и нравы неаполитанской улицы. В этой комедии Бруно высмеивает педантизм и суеверие, с едким сарказмом обрушивается на тупой и лицемерный аморализм, который принесла с собой католическая реакция.
Р. И. Хлодовский

Отрекался ли Галилео Галилей от своих научных взглядов?
В 1609, на основании дошедших до него сведений об изобретённой в Голландии зрительной трубе, Галилей строит свой первый телескоп, дающий приблизительно 3-х кратное увеличение. Работа телескопа демонстрировалась с башни св. Марка в Венеции и произвела громадное впечатление. Вскоре Галилей построил телескоп с увеличением в 32 раза. Наблюдения, произведённые с его помощью, разрушили «идеальные сферы» Аристотеля и догмат о совершенстве небесных тел: поверхность Луны оказалась покрытой горами и изрытой кратерами, звёзды потеряли свои кажущиеся размеры и впервые была постигнута их колоссальная удалённость. У Юпитера обнаружилось 4 спутника, на небе стало видно громадное количество новых звёзд. Млечный Путь распался на отдельные звёзды. Свои наблюдения Галилей описал в сочинении «Звёздный вестник» (1610-11), которое произвело ошеломляющее впечатление. Вместе с тем началась ожесточённая полемика. Галилея обвиняли в том, что всё виденное им - оптический обман, аргументировали и просто тем, что его наблюдения противоречат Аристотелю, а следовательно, ошибочны.
Астрономические открытия послужили поворотным пунктом в жизни Галилея: он освободился от преподавательской деятельности и по приглашению герцога Козимо II Медичи переселился во Флоренцию. Здесь он становится придворным «философом» и «первым математиком» университета, без обязательства читать лекции.
Продолжая телескопические наблюдения, Галилей открыл фазы Венеры, солнечные пятна и вращение Солнца, изучал движение спутников Юпитера, наблюдал Сатурн. В 1611 Галилей ездил в Рим, где ему был оказан восторженный приём при папском дворе и где у него завязалась дружба с князем Чези, основателем Академии деи Линчеи («Академии Рысьеглазых»), членом которой он стал. По настоянию герцога Галилей опубликовал своё первое антиаристотелевское сочинение - «Рассуждение о телах, пребывающих в воде, и тех, которые в ней движутся» (1612), где применил принцип равных моментов к выводу условий равновесия в жидких телах.
Однако в 1613 стало известно письмо Галилея к аббату Кастелли, в котором он защищал взгляды Коперника. Письмо послужило поводом для прямого доноса на Галилея в инквизицию. В 1616 конгрегация иезуитов объявила учение Коперника еретическим, книга Коперника была включена в список запрещенных. Имя Галилея в постановлении не было названо, но частным образом ему было приказано отказаться от защиты этого учения. Галилей формально подчинился декрету. В течение нескольких лет он принуждён был молчать о системе Коперника или говорить о ней намёками. Галилей в 1616 году едет в Рим. В папском дворце собираются богословы, так называемые “подготовители судебных дел для инквизиции” для обсуждения и испытания Коперниковой доктрины, а затем издают эдикт, запрещающий проповедовать взгляды Коперника. Это был первый официальный запрет. Но Галилей не отказался от своих взглядов. Только стал осторожнее. Лишённый права проповедовать учение Коперника, он направил свою критику против Аристотеля. Единственным большим сочинением Галилея за этот период был «Пробирщик» - полемический трактат по поводу трёх комет, появившихся в 1618. В отношении литературной формы, остроумия и изысканности стиля это одно из наиболее замечательных произведений Галилея
Убедившись в справедливости системы Коперника, Галилей принимается за работу над большим астрономическим трактатом “Диалог о двух главнейших системах мира – птоломеевой и коперниковой” (1632 г.). В этой работе настолько убедительно доказываются преимущества Коперникова учения, а папа, выведенный под личиной простоватого неудачника Симпличио, сторонника Аристотелевской концепции, выглядит таким дураком, что гром не замедлил грянуть. Папа обиделся. Этим воспользовались враги Галилея и его вызвали в суд. Дух семидесятилетнего Галилея был сломлен. Престарелого учёного принудили к публичному покаянию, и в последние годы жизни он провёл под домашним арестом и надзором инквизиции. В 1635 году он отрёкся “от своего еретического учения”. Учёный Галилей не был героем. Он признал себя побеждённым. Но в истории науки он остался великим учёным, а суд над Галилеем, даже по выражению приверженцев католической религии, “был самой роковой ошибкой, которую когда-либо допускали церковные власти относительно науки”.
В 1623 на папский престол под именем Урбана VIII вступил друг Галилея кардинал Маффео Барберини. Для Галилея это событие казалось равносильным освобождению от уз интердикта (декрета). В 1630 он приехал в Рим уже с готовой рукописью «Диалога о приливах и отливах» (первое название «Диалога о двух главнейших системах мира»), в котором системы Коперника и Птолемея представлены в разговорах трёх собеседников: Сагредо, Сальвиати и Симпличо.
и т.д.................

Малые частицы взвеси хаотично движутся под воздействием ударов молекул жидкости.

Во второй половине ХIХ века в научных кругах разгорелась нешуточная дискуссия о природе атомов. На одной стороне выступали неопровержимые авторитеты, такие как Эрнст Мах (см. Ударные волны), который утверждал, что атомы — суть просто математические функции, удачно описывающие наблюдаемые физические явления и не имеющие под собой реальной физической основы. С другой стороны, ученые новой волны — в частности, Людвиг Больцман (см. Постоянная Больцмана) — настаивали на том, что атомы представляют собой физические реалии. И ни одна из двух сторон не сознавала, что уже за десятки лет до начала их спора получены экспериментальные результаты, раз и навсегда решающие вопрос в пользу существования атомов как физической реальности, — правда, получены они в смежной с физикой дисциплине естествознания ботаником Робертом Броуном.

Еще летом 1827 года Броун, занимаясь изучением поведения цветочной пыльцы под микроскопом (он изучал водную взвесь пыльцы растения Clarkia pulchella ), вдруг обнаружил, что отдельные споры совершают абсолютно хаотичные импульсные движения. Он доподлинно определил, что эти движения никак не связаны ни с завихрениями и токами воды, ни с ее испарением, после чего, описав характер движения частиц, честно расписался в собственном бессилии объяснить происхождение этого хаотичного движения. Однако, будучи дотошным экспериментатором, Броун установил, что подобное хаотичное движение свойственно любым микроскопическим частицам, — будь то пыльца растений, взвеси минералов или вообще любая измельченная субстанция.

Лишь в 1905 году не кто иной, как Альберт Эйнштейн, впервые осознал, что это таинственное, на первый взгляд, явление служит наилучшим экспериментальным подтверждением правоты атомной теории строения вещества. Он объяснил его примерно так: взвешенная в воде спора подвергается постоянной «бомбардировке» со стороны хаотично движущихся молекул воды. В среднем, молекулы воздействуют на нее со всех сторон с равной интенсивностью и через равные промежутки времени. Однако, как бы ни мала была спора, в силу чисто случайных отклонений сначала она получает импульс со стороны молекулы, ударившей ее с одной стороны, затем — со стороны молекулы, ударившей ее с другой и т. д. В результате усреднения таких соударений получается, что в какой-то момент частица «дергается» в одну сторону, затем, если с другой стороны ее «толкнуло» больше молекул — в другую и т. д. Использовав законы математической статистики и молекулярно-кинетической теории газов, Эйнштейн вывел уравнение, описывающее зависимость среднеквадратичного смещения броуновской частицы от макроскопических показателей. (Интересный факт: в одном из томов немецкого журнала «Анналы физики» (Annalen der Physik ) за 1905 год были опубликованы три статьи Эйнштейна: статья с теоретическим разъяснением броуновского движения, статья об основах специальной теории относительности и, наконец, статья с описанием теории фотоэлектрического эффекта . Именно за последнюю Альберт Эйнштейн был удостоен Нобелевской премии по физике в 1921 году.)

В 1908 году французский физик Жан Батист Перрен (Jean-Baptiste Perrin, 1870-1942) провел блестящую серию опытов, подтвердивших правильность эйнштейновского объяснения феномена броуновского движения. Стало окончательно ясно, что наблюдаемое «хаотичное» движение броуновских частиц — следствие межмолекулярных соударений. Поскольку «полезные математические условности» (по Маху) не могут привести к наблюдаемым и совершенно реальным перемещениям физических частиц, стало окончательно ясно, что спор о реальности атомов окончен: они существуют в природе. В качестве «призовой игры» Перрену досталась выведенная Эйнштейном формула, которая позволила французу проанализировать и оценить среднее число атомов и/или молекул, соударяющихся с взвешенной в жидкости частицей за заданный промежуток времени и, через этот показатель, рассчитать молярные числа различных жидкостей. В основе этой идеи лежал тот факт, что в каждый данный момент времени ускорение взвешенной частицы зависит от числа соударений с молекулами среды (см. Законы механики Ньютона), а значит, и от числа молекул в единице объема жидкости. А это не что иное, как число Авогадро (см. Закон Авогадро) — одна из фундаментальных постоянных, определяющих строение нашего мира.

«Физика - 10 класс»

Вспомните из курса физики основной школы явление диффузии.
Чем может быть объяснено это явление?

Ранее вы узнали, что такое диффузия , т. е. проникновение молекул одного вещества в межмолекулярное пространство другого вещества. Это явление определяется беспорядочным движением молекул. Этим можно объяснить, например, тот факт, что объём смеси воды и спирта меньше объёма составляющих её компонентов.

Но самое очевидное доказательство движения молекул можно получить, наблюдая в микроскоп мельчайшие, взвешенные в воде частицы какого-либо твёрдого вещества. Эти частицы совершают беспорядочное движение, которое называют броуновским .

Броуновское движение - это тепловое движение взвешенных в жидкости (или газе) частиц.


Наблюдение броуновского движения.


Английский ботаник Р. Броун (1773-1858) впервые наблюдал это явление в 1827 г., рассматривая в микроскоп взвешенные в воде споры плауна.

Позже он рассматривал и другие мелкие частицы, в том числе частички камня из египетских пирамид. Сейчас для наблюдения броуновского движения используют частички краски гуммигут, которая нерастворима в воде. Эти частички совершают беспорядочное движение. Самым поразительным и непривычным для нас является то, что это движение никогда не прекращается. Мы ведь привыкли к тому, что любое движущееся тело рано или поздно останавливается. Броун вначале думал, что споры плауна проявляют признаки жизни.

Броуновское движение - тепловое движение, и оно не может прекратиться. С увеличением температуры интенсивность его растёт.

На рисунке 8.3 приведены траектории движения броуновских частиц. Положения частиц, отмеченные точками, определены через равные промежутки времени - 30 с. Эти точки соединены прямыми линиями. В действительности траектория частиц гораздо сложнее.

Объяснение броуновского движения.


Объяснить броуновское движение можно только на основе молекулярно-кинетической теории.

«Немногие явления способны так увлечь наблюдателя, как броуновское движение. Здесь наблюдателю позволяется заглянуть за кулисы того, что совершается в природе. Перед ним открывается новый мир - безостановочная сутолока огромного числа частиц. Быстро пролетают в поле зрения микроскопа мельчайшие частицы, почти мгновенно меняя направление движения. Медленнее продвигаются более крупные частицы, но и они постоянно меняют направление движения. Большие частицы практически толкутся на месте. Их выступы явно показывают вращение частиц вокруг своей оси, которая постоянно меняет направление в пространстве. Нигде нет и следа системы или порядка. Господство слепого случая - вот какое сильное, подавляющее впечатление производит эта картина на наблюдателя». R. Поль (1884-1976).

Причина броуновского движения частицы заключается в том, что удары молекул жидкости о частицу не компенсируют друг друга.


На рисунке 8.4 схематически показано положение одной броуновской частицы и ближайших к ней молекул.

При беспорядочном движении молекул передаваемые ими броуновской частице импульсы, например слева и справа, неодинаковы. Поэтому отлична от нуля результирующая сила давления молекул жидкости на броуновскую частицу. Эта сила и вызывает изменение движения частицы.

Молекулярно-кинетическая теория броуновского движения была создана в 1905 г. А. Эйнштейном (1879-1955). Построение теории броуновского движения и её экспериментальное подтверждение французским физиком Ж. Перреном окончательно завершили победу молекулярно-кинетической теории. В 1926 г. Ж. Перрен получил Нобелевскую премию за исследование структуры вещества.


Опыты Перрена.


Идея опытов Перрена состоит в следующем. Известно, что концентрация молекул газа в атмосфере уменьшается с высотой. Если бы не было теплового движения, то все молекулы упали бы на Землю и атмосфера исчезла бы. Однако если бы не было притяжения к Земле то за счёт теплового движения молекулы покидали бы Землю, так как газ способен к неограниченному расширению. В результате действия этих противоположных факторов устанавливается определённое распределение молекул по высоте, т. е. концентрация молекул довольно быстро уменьшается с высотой. Причём чем больше масса молекул, тем быстрее с высотой убывает их концентрация.

Броуновские частицы участвуют в тепловом движении. Так как их взаимодействие пренебрежимо мало, то совокупность этих частиц в газе или жидкости можно рассматривать как идеальный газ из очень тяжёлых молекул. Следовательно, концентрация броуновских частиц в газе или жидкости в поле тяжести Земли должна убывать по тому же закону, что и концентрация молекул газа. Закон этот известен.

Перрен с помощью микроскопа большого увеличения и малой глубины поля зрения (малой глубины резкости) наблюдал броуновские частицы в очень тонких слоях жидкости. Подсчитывая концентрацию частиц на разных высотах, он нашёл, что эта концентрация убывает с высотой по тому же закону, что и концентрация молекул газа. Отличие в том, что за счёт большой массы броуновских частиц убывание происходит очень быстро.

Все эти факты свидетельствуют о правильности теории броуновского движения и о том, что броуновские частицы участвуют в тепловом движении молекул.

Подсчёт броуновских частиц на разных высотах позволил Перрену определить постоянную Авогадро совершенно новым методом. Значение этой постоянной совпало с ранее известным.

Что такое броуновское движение?

Сейчас вы познакомитесь с самым очевидным доказательством теплового движения молекул (второе основное положение молекулярно-кинетической теории). Обязательно постарайтесь посмотреть в микроскоп и увидеть, как движутся так называемые броуновские частицы.

Ранее вы узнали, что такое диффузия , т. е. перемешивание газов, жидкостей и твердых тел при их непосредственном контакте. Это явление можно объяснить беспорядочным движением молекул и проникновением молекул одного вещества в пространство между молекулами другого вещества. Этим можно объяснить, например, тот факт, что объем смеси воды и спирта меньше объема составляющих ее компонентов. Но самое очевидное доказательство движения молекул можно получить, наблюдая в микроскоп мельчайшие, взвешенные в воде частицы какого-либо твердого вещества. Эти частицы совершают беспорядочное движение, которое называют броуновским .

Это тепловое движение взвешенных в жидкости (или газе) частиц.

Наблюдение броуновского движения

Английский ботаник Р. Броун (1773-1858) впервые наблюдал это явление в 1827 г., рассматривая в микроскоп взвешенные в воде споры плауна. Позже он рассматривал и другие мелкие частицы, в том числе частички камня из египетских пирамид. Сейчас для наблюдения броуновского движения используют частички краски гуммигут, которая нерастворима в воде. Эти частички совершают беспорядочное движение. Самым поразительным и непривычным для нас является то, что это движение никогда не прекращается. Мы ведь привыкли к тому, что любое движущееся тело рано или поздно останавливается. Броун вначале думал, что споры плауна проявляют признаки жизни.

тепловое движение, и оно не может прекратиться. С увеличением температуры интенсивность его растет. На рисунке 8.3 приведена схема движения броуновских частиц. Положения частиц, отмеченные точками, определены через равные промежутки времени - 30 с. Эти точки соединены прямыми линиями. В действительности траектория частиц гораздо сложнее.

Броуновское движение можно наблюдать и в газе. Его совершают взвешенные в воздухе частицы пыли или дыма.

Красочно описывает броуновское движение немецкий физик Р. Поль (1884-1976): «Немногие явления способны так увлечь наблюдателя, как броуновское движение. Здесь наблюдателю позволяется заглянуть за кулисы того, что совершается в природе . Перед ним открывается новый мир - безостановочная сутолока огромного числа частиц. Быстро пролетают в поле зрения микроскопа мельчайшие частицы, почти мгновенно меняя направление движения. Медленнее продвигаются более крупные частицы, но и они постоянно меняют направление движения. Большие частицы практически толкутся на месте. Их выступы явно показывают вращение частиц вокруг своей оси, которая постоянно меняет направление в пространстве. Нигде нет и следа системы или порядка. Господство слепого случая - вот какое сильное, подавляющее впечатление производит эта картина на наблюдателя».

В настоящее время понятие броуновское движение используется в более широком смысле. Например, броуновским движением является дрожание стрелок чувствительных измерительных приборов, которое происходит из-за теплового движения атомов деталей приборов и окружающей среды.

Объяснение броуновского движения

Объяснить броуновское движение можно только на основе молекулярно-кинетической теории. Причина броуновского движения частицы заключается в том, что удары молекул жидкости о частицу не компенсируют друг друга . На рисунке 8.4 схематически показано положение одной броуновской частицы и ближайших к ней молекул. При беспорядочном движении молекул передаваемые ими броуновской частице импульсы, например слева и справа, неодинаковы. Поэтому отлична от нуля результирующая сила давления молекул жидкости на броуновскую частицу. Эта сила и вызывает изменение движения частицы.



Среднее давление имеет определенное значение как в газе, так и в жидкости. Но всегда происходят незначительные случайные отклонения от этого среднего значения. Чем меньше площадь поверхности тела, тем заметнее относительные изменения силы давления, действующей на данную площадь. Так, например, если площадка имеет размер порядка нескольких диаметров молекулы, то действующая на нее сила давления меняется скачкообразно от нуля до некоторого значения при попадании молекулы в эту площадку.

Молекулярно-кинетическая теория броуновского движения была создана в 1905 г. А. Эйнштейном (1879-1955).

Построение теории броуновского движения и ее экспериментальное подтверждение французским физиком Ж. Перреном окончательно завершили победу молекулярно-кинетической теории.

Опыты Перрена

Идея опытов Перрена состоит в следующем. Известно, что концентрация молекул газа в атмосфере уменьшается с высотой. Если бы не было теплового движения, то все молекулы упали бы на Землю и атмосфера исчезла бы. Однако если бы не было притяжения к Земле, то за счет теплового движения молекулы покидали бы Землю, так как газ способен к неограниченному расширению. В результате действия этих противоположных факторов устанавливается определенное распределение молекул по высоте, о чем сказано выше, т. е. концентрация молекул довольно быстро уменьшается с высотой. Причем, чем больше масса молекул, тем быстрее с высотой убывает их концентрация.

Броуновские частицы участвуют в тепловом движении. Так как их взаимодействие пренебрежимо мало, то совокупность этих частиц в газе или жидкости можно рассматривать как идеальный газ из очень тяжелых молекул. Следовательно, концентрация броуновских частиц в газе или жидкости в поле тяжести Земли должна убывать по тому же закону, что и концентрация молекул газа. Закон этот известен.

Перрен с помощью микроскопа большого увеличения и малой глубины поля зрения (малой глубины резкости) наблюдал броуновские частицы в очень тонких слоях жидкости. Подсчитывая концентрацию частиц на разных высотах, он нашел, что эта концентрация убывает с высотой по тому же закону, что и концентрация молекул газа. Отличие в том, что за счет большой массы броуновских частиц убывание происходит очень быстро.

Более того, подсчет броуновских частиц на разных высотах позволил Перрену определить постоянную Авогадро совершенно новым методом. Значение этой постоянной совпало с известным.

Все эти факты свидетельствуют о правильности теории броуновского движения и, соответственно, о том, что броуновские частицы участвуют в тепловом движении молекул.

Вы наглядно убедились в существовании теплового движения; увидели, как происходит беспорядочное движение. Молекулы движутся еще более беспорядочно, чем броуновские частицы.

Сущность явления

Теперь давайте попробуем разобраться в сущности явления броуновского движения. А происходит оно потому, что все абсолютно жидкости и газы состоят из атомов или молекул. Но также нам известно, что эти мельчайшие частицы, находясь в непрерывном хаотическом движении, постоянно толкают броуновскую частицу с разных сторон.

Но вот что интересно, ученые доказали, что частицы более крупных размеров, которые превышают 5 мкм остаются неподвижными и в броуновском движении почти не участвуют, чего не скажешь о более мелких частицах. Частицы, имеющие размер менее 3 мкм, способны двигаться поступательно, совершая вращения или выписывая сложные траектории.

При погружении в среду крупного тела, происходящие в огромном количестве толчки, как бы выходят на средний уровень и поддерживают постоянное давление. В этом случае в действие вступает теория Архимеда, так как окруженное средой со всех сторон крупное тело уравновешивает давление и оставшаяся подъемная сила позволяет этому телу всплыть, или утонуть.

Но если тело имеет размеры такие, как броуновская частица, то есть совершенно незаметные, то становятся заметны отклонения давления, которые способствуют созданию случайной силы, которая приводит к колебаниям этих частиц. Можно сделать вывод, что броуновские частицы в среде находятся во взвешенном состоянии, в отличие от больших частиц, которые тонут или всплывают.

Значение броуновского движения

Давайте попробуем разобраться, имеет ли какое-либо значение броуновское движение в природной среде:

Во-первых, броуновское движение играет значительную роль в питании растений из почвы;
Во-вторых, в организмах человека и животных всасывание питательных веществ происходит через стенки органов пищеварения благодаря броуновскому движению;
В-третьих, в осуществлении кожного дыхания;
Ну и последнее, имеет значение броуновское движение и в распространении вредных веществ в воздухе, и в воде.

Домашнее задание

Внимательно прочитайте вопросы и дайте письменные ответы на них:

1. Вспомните, что называется диффузией?
2. Какая существует связь между диффузией и тепловым движением молекул?
3. Дайте определение броуновскому движению.
4. Как вы думаете, является ли броуновское движение тепловым, и обоснуйте свой ответ?
5. Изменится ли характер броуновского движения при нагревании? Если изменится, то, как именно?
6. Каким прибором пользуются при изучении броуновского движения?
7. Меняется ли картина броуновского движения при увеличении температуры и как именно?
8. Произойдут ли какие-либо изменения в броуновском движении, если водную эмульсию заменить на глицериновую?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Сегодня мы подробно рассмотрим важную тему - дадим определение броуновскому движению маленьких кусочков материи в жидкости или газе.

Карта и координаты

Некоторые школьники, замученные скучными уроками, не понимают, зачем изучать физику. А между тем, именно эта наука когда-то позволила открыть Америку!

Начнем издалека. Древним цивилизациям Средиземноморья в каком-то смысле повезло: они развивались на берегу закрытого внутреннего водоема. Средиземное море потому так и называется, что оно со всех сторон окружено сушей. И древние путешественники могли довольно далеко продвинуться со своей экспедицией, не теряя из вида берегов. Очертания суши помогали ориентироваться. И первые карты составлялись скорее описательно, чем географически. Благодаря этим относительно недалеким плаваниям греки, финикийцы и египтяне хорошо научились строить корабли. А где лучшее оборудование - там и стремление раздвинуть границы своего мира.

Поэтому в один прекрасный день европейские державы решили выйти в океан. Во время плавания по бескрайним просторам между материками моряки долгие месяцы видели только воду, и им надо было как-то ориентироваться. Определить свои координаты помогло изобретение точных часов и качественного компаса.

Часы и компас

Изобретение маленьких ручных хронометров очень выручило мореплавателей. Чтобы точно определить, где они находятся, им надо было иметь простейший инструмент, который измерял высоту солнца над горизонтом, и знать, когда именно полдень. А благодаря компасу капитаны судов знали, куда они направляются. И часы, и свойства магнитной стрелки изучали и создавали физики. Благодаря этому европейцам был открыт весь мир.

Новые континенты представляли собой terra incognita, неизведанные земли. На них росли странные растения и водились непонятные животные.

Растения и физика

Все естествоиспытатели цивилизованного мира ринулись изучать эти новые странные экологические системы. И конечно же, они стремились извлечь из них выгоду.

Роберт Броун был английским ботаником. Он совершал поездки в Австралию и на Тасманию, собирал там коллекции растений. Уже дома, в Англии, он много работал над описанием и классификацией привезенного материала. И ученый этот был очень дотошным. Однажды, наблюдая за движением пыльцы в соке растений, он заметил: мелкие частицы постоянно совершают хаотические зигзагообразные перемещения. В этом и состоит определение броуновского движения мелких элементов в газах и жидкостях. Благодаря открытию потрясающий ботаник вписал свое имя в историю физики!

Броун и Гуи

В европейской науке так принято: называть эффект или явление именем того, кто его обнаружил. Но часто это бывает случайно. А вот человек, который описывает, открывает важность или более подробно исследует физический закон, оказывается в тени. Так случилось и с французом Луи Жоржем Гуи. Именно он дал определение броуновскому движению (7 класс о нем точно не слышит, когда изучает эту тему по физике).

Исследования Гуи и свойства броуновского движения

Французский экспериментатор Луи Жорж Гуи наблюдал движение разного типа частиц в нескольких жидкостях, в том числе и в растворах. Наука того времени уже умела точно определять размер кусочков вещества до десятых долей микрометра. Исследуя, что такое броуновское движение (определение в физике этому явлению дал именно Гуи), ученый понял: интенсивность перемещения частиц увеличивается, если их поместить в менее вязкую среду. Будучи экспериментатором широкого спектра, он подвергал взвесь действию света и электромагнитных полей различной мощности. Ученый выяснил, что эти факторы никак не влияют на хаотические зигзагообразные скачки частиц. Гуи однозначно показал, что доказывает броуновское движение: тепловое перемещение молекул жидкости или газа.

Коллектив и масса

А теперь подробнее опишем механизм зигзагообразных скачков небольших кусочков материи в жидкости.

Любое вещество состоит из атомов или молекул. Эти элементы мира очень маленькие, ни один оптический микроскоп не способен их увидеть. В жидкости они все время колеблются и перемещаются. Когда любая видимая частица попадает в раствор, ее масса в тысячи раз больше одного атома. Броуновское движение молекул жидкости совершается хаотически. Но тем не менее все атомы или молекулы представляют собой коллектив, они связаны друг с другом, как люди, которые взялись за руки. Поэтому иногда так случается, что атомы жидкости с одной стороны частицы движутся так, что «давят» на нее, при этом с другой стороны от частицы создается менее плотная среда. Поэтому пылинка перемещается в пространстве раствора. В другом месте коллективное движение молекул жидкости случайно действует на другую сторону более массивного компонента. Именно так и совершается броуновское движение частиц.

Время и Эйнштейн

Если вещество обладает ненулевой температурой, его атомы совершают тепловые колебания. Поэтому даже в очень холодной или переохлажденной жидкости существует броуновское движение. Эти хаотические перескоки маленьких взвешенных частиц никогда не прекращаются.

Альберт Эйнштейн, пожалуй, самый знаменитый ученый двадцатого века. Всем, кто хоть сколько-нибудь интересуется физикой, известна формула E = mc 2 . Также многие могут вспомнить о фотоэффекте, за который ему дали Нобелевскую премию, и о специальной теории относительности. Но мало кто знает, что Эйнштейн разработал формулу для броуновского движения.

На основании молекулярно-кинетической теории ученый вывел коэффициент диффузии взвешенных частиц в жидкости. И произошло это в 1905 году. Формула выглядит так:

D = (R * T) / (6 * N A * a * π * ξ),

где D - искомый коэффициент, R - это универсальная газовая постоянная, T — абсолютная температура (выражается в Кельвинах), N A — постоянная Авогадро (соответствует одному молю вещества, или примерно 10 23 молекул), a — приблизительный средний радиус частиц, ξ — динамическая вязкость жидкости или раствора.

А уже в 1908 году французский физик Жан Перрен со своими студентами экспериментально доказали верность вычислений Эйнштейна.

Одна частица в поле воин

Выше мы описывали коллективное воздействие среды на много частиц. Но и один чужеродный элемент в жидкости может дать некоторые закономерности и зависимости. Например, если наблюдать за броуновской частицей долгое время, то можно зафиксировать все ее перемещения. И из этого хаоса возникнет стройная система. Среднее продвижение броуновской частицы вдоль какого-то одного направления пропорционально времени.

При экспериментах над частицей в жидкости были уточнены следующие величины:

  • постоянная Больцмана;
  • число Авогадро.

Помимо линейного движения, также свойственно хаотическое вращение. И среднее угловое смещение также пропорционально времени наблюдения.

Размеры и формы

После таких рассуждений может возникнуть закономерный вопрос: почему этот эффект не наблюдается для больших тел? Потому что когда протяженность погруженного в жидкость объекта больше определенной величины, то все эти случайные коллективные «толчки» молекул превращаются в постоянное давление, так как усредняются. И на тело уже действует общая Архимеда. Таким образом, большой кусок железа тонет, а металлическая пыль плавает в воде.

Размер частиц, на примере которых выявляется флуктуация молекул жидкости, не должен превышать 5 микрометров. Что касается объектов с большими размерами, то здесь этот эффект заметен не будет.